Metamath Proof Explorer


Theorem dchrelbas4

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G = DChr N
dchrmhm.z Z = /N
dchrmhm.b D = Base G
dchrelbas4.l L = ℤRHom Z
Assertion dchrelbas4 X D N X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0

Proof

Step Hyp Ref Expression
1 dchrmhm.g G = DChr N
2 dchrmhm.z Z = /N
3 dchrmhm.b D = Base G
4 dchrelbas4.l L = ℤRHom Z
5 1 3 dchrrcl X D N
6 eqid Base Z = Base Z
7 eqid Unit Z = Unit Z
8 id N N
9 1 2 6 7 8 3 dchrelbas2 N X D X mulGrp Z MndHom mulGrp fld y Base Z X y 0 y Unit Z
10 nnnn0 N N 0
11 10 adantr N X mulGrp Z MndHom mulGrp fld N 0
12 2 6 4 znzrhfo N 0 L : onto Base Z
13 fveq2 L x = y X L x = X y
14 13 neeq1d L x = y X L x 0 X y 0
15 eleq1 L x = y L x Unit Z y Unit Z
16 14 15 imbi12d L x = y X L x 0 L x Unit Z X y 0 y Unit Z
17 16 cbvfo L : onto Base Z x X L x 0 L x Unit Z y Base Z X y 0 y Unit Z
18 11 12 17 3syl N X mulGrp Z MndHom mulGrp fld x X L x 0 L x Unit Z y Base Z X y 0 y Unit Z
19 df-ne X L x 0 ¬ X L x = 0
20 19 a1i N X mulGrp Z MndHom mulGrp fld x X L x 0 ¬ X L x = 0
21 2 7 4 znunit N 0 x L x Unit Z x gcd N = 1
22 11 21 sylan N X mulGrp Z MndHom mulGrp fld x L x Unit Z x gcd N = 1
23 1red N X mulGrp Z MndHom mulGrp fld x 1
24 simpr N X mulGrp Z MndHom mulGrp fld x x
25 simpll N X mulGrp Z MndHom mulGrp fld x N
26 25 nnzd N X mulGrp Z MndHom mulGrp fld x N
27 nnne0 N N 0
28 simpr x = 0 N = 0 N = 0
29 28 necon3ai N 0 ¬ x = 0 N = 0
30 25 27 29 3syl N X mulGrp Z MndHom mulGrp fld x ¬ x = 0 N = 0
31 gcdn0cl x N ¬ x = 0 N = 0 x gcd N
32 24 26 30 31 syl21anc N X mulGrp Z MndHom mulGrp fld x x gcd N
33 32 nnred N X mulGrp Z MndHom mulGrp fld x x gcd N
34 32 nnge1d N X mulGrp Z MndHom mulGrp fld x 1 x gcd N
35 23 33 34 leltned N X mulGrp Z MndHom mulGrp fld x 1 < x gcd N x gcd N 1
36 35 necon2bbid N X mulGrp Z MndHom mulGrp fld x x gcd N = 1 ¬ 1 < x gcd N
37 22 36 bitrd N X mulGrp Z MndHom mulGrp fld x L x Unit Z ¬ 1 < x gcd N
38 20 37 imbi12d N X mulGrp Z MndHom mulGrp fld x X L x 0 L x Unit Z ¬ X L x = 0 ¬ 1 < x gcd N
39 con34b 1 < x gcd N X L x = 0 ¬ X L x = 0 ¬ 1 < x gcd N
40 38 39 bitr4di N X mulGrp Z MndHom mulGrp fld x X L x 0 L x Unit Z 1 < x gcd N X L x = 0
41 40 ralbidva N X mulGrp Z MndHom mulGrp fld x X L x 0 L x Unit Z x 1 < x gcd N X L x = 0
42 18 41 bitr3d N X mulGrp Z MndHom mulGrp fld y Base Z X y 0 y Unit Z x 1 < x gcd N X L x = 0
43 42 pm5.32da N X mulGrp Z MndHom mulGrp fld y Base Z X y 0 y Unit Z X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0
44 9 43 bitrd N X D X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0
45 5 44 biadanii X D N X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0
46 3anass N X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0 N X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0
47 45 46 bitr4i X D N X mulGrp Z MndHom mulGrp fld x 1 < x gcd N X L x = 0