Metamath Proof Explorer


Theorem dchrelbas4

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrelbas4.l L=ℤRHomZ
Assertion dchrelbas4 XDNXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrelbas4.l L=ℤRHomZ
5 1 3 dchrrcl XDN
6 eqid BaseZ=BaseZ
7 eqid UnitZ=UnitZ
8 id NN
9 1 2 6 7 8 3 dchrelbas2 NXDXmulGrpZMndHommulGrpfldyBaseZXy0yUnitZ
10 nnnn0 NN0
11 10 adantr NXmulGrpZMndHommulGrpfldN0
12 2 6 4 znzrhfo N0L:ontoBaseZ
13 fveq2 Lx=yXLx=Xy
14 13 neeq1d Lx=yXLx0Xy0
15 eleq1 Lx=yLxUnitZyUnitZ
16 14 15 imbi12d Lx=yXLx0LxUnitZXy0yUnitZ
17 16 cbvfo L:ontoBaseZxXLx0LxUnitZyBaseZXy0yUnitZ
18 11 12 17 3syl NXmulGrpZMndHommulGrpfldxXLx0LxUnitZyBaseZXy0yUnitZ
19 df-ne XLx0¬XLx=0
20 19 a1i NXmulGrpZMndHommulGrpfldxXLx0¬XLx=0
21 2 7 4 znunit N0xLxUnitZxgcdN=1
22 11 21 sylan NXmulGrpZMndHommulGrpfldxLxUnitZxgcdN=1
23 1red NXmulGrpZMndHommulGrpfldx1
24 simpr NXmulGrpZMndHommulGrpfldxx
25 simpll NXmulGrpZMndHommulGrpfldxN
26 25 nnzd NXmulGrpZMndHommulGrpfldxN
27 nnne0 NN0
28 simpr x=0N=0N=0
29 28 necon3ai N0¬x=0N=0
30 25 27 29 3syl NXmulGrpZMndHommulGrpfldx¬x=0N=0
31 gcdn0cl xN¬x=0N=0xgcdN
32 24 26 30 31 syl21anc NXmulGrpZMndHommulGrpfldxxgcdN
33 32 nnred NXmulGrpZMndHommulGrpfldxxgcdN
34 32 nnge1d NXmulGrpZMndHommulGrpfldx1xgcdN
35 23 33 34 leltned NXmulGrpZMndHommulGrpfldx1<xgcdNxgcdN1
36 35 necon2bbid NXmulGrpZMndHommulGrpfldxxgcdN=1¬1<xgcdN
37 22 36 bitrd NXmulGrpZMndHommulGrpfldxLxUnitZ¬1<xgcdN
38 20 37 imbi12d NXmulGrpZMndHommulGrpfldxXLx0LxUnitZ¬XLx=0¬1<xgcdN
39 con34b 1<xgcdNXLx=0¬XLx=0¬1<xgcdN
40 38 39 bitr4di NXmulGrpZMndHommulGrpfldxXLx0LxUnitZ1<xgcdNXLx=0
41 40 ralbidva NXmulGrpZMndHommulGrpfldxXLx0LxUnitZx1<xgcdNXLx=0
42 18 41 bitr3d NXmulGrpZMndHommulGrpfldyBaseZXy0yUnitZx1<xgcdNXLx=0
43 42 pm5.32da NXmulGrpZMndHommulGrpfldyBaseZXy0yUnitZXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0
44 9 43 bitrd NXDXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0
45 5 44 biadanii XDNXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0
46 3anass NXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0NXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0
47 45 46 bitr4i XDNXmulGrpZMndHommulGrpfldx1<xgcdNXLx=0