Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dchrmhm.g | |
|
dchrmhm.z | |
||
dchrmhm.b | |
||
dchrelbas4.l | |
||
Assertion | dchrelbas4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | |
|
2 | dchrmhm.z | |
|
3 | dchrmhm.b | |
|
4 | dchrelbas4.l | |
|
5 | 1 3 | dchrrcl | |
6 | eqid | |
|
7 | eqid | |
|
8 | id | |
|
9 | 1 2 6 7 8 3 | dchrelbas2 | |
10 | nnnn0 | |
|
11 | 10 | adantr | |
12 | 2 6 4 | znzrhfo | |
13 | fveq2 | |
|
14 | 13 | neeq1d | |
15 | eleq1 | |
|
16 | 14 15 | imbi12d | |
17 | 16 | cbvfo | |
18 | 11 12 17 | 3syl | |
19 | df-ne | |
|
20 | 19 | a1i | |
21 | 2 7 4 | znunit | |
22 | 11 21 | sylan | |
23 | 1red | |
|
24 | simpr | |
|
25 | simpll | |
|
26 | 25 | nnzd | |
27 | nnne0 | |
|
28 | simpr | |
|
29 | 28 | necon3ai | |
30 | 25 27 29 | 3syl | |
31 | gcdn0cl | |
|
32 | 24 26 30 31 | syl21anc | |
33 | 32 | nnred | |
34 | 32 | nnge1d | |
35 | 23 33 34 | leltned | |
36 | 35 | necon2bbid | |
37 | 22 36 | bitrd | |
38 | 20 37 | imbi12d | |
39 | con34b | |
|
40 | 38 39 | bitr4di | |
41 | 40 | ralbidva | |
42 | 18 41 | bitr3d | |
43 | 42 | pm5.32da | |
44 | 9 43 | bitrd | |
45 | 5 44 | biadanii | |
46 | 3anass | |
|
47 | 45 46 | bitr4i | |