Metamath Proof Explorer


Theorem dchrisum0fval

Description: Value of the function F , the divisor sum of a Dirichlet character. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
dchrisum0f.f F=bvq|qbXLv
Assertion dchrisum0fval AFA=tq|qAXLt

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 dchrisum0f.f F=bvq|qbXLv
8 breq2 b=AqbqA
9 8 rabbidv b=Aq|qb=q|qA
10 9 sumeq1d b=Avq|qbXLv=vq|qAXLv
11 2fveq3 v=tXLv=XLt
12 11 cbvsumv vq|qAXLv=tq|qAXLt
13 10 12 eqtrdi b=Avq|qbXLv=tq|qAXLt
14 sumex tq|qAXLtV
15 13 7 14 fvmpt AFA=tq|qAXLt