Metamath Proof Explorer


Theorem dchrmul

Description: Group operation on the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrmul.t ·˙=+G
dchrmul.x φXD
dchrmul.y φYD
Assertion dchrmul φX·˙Y=X×fY

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrmul.t ·˙=+G
5 dchrmul.x φXD
6 dchrmul.y φYD
7 1 3 dchrrcl XDN
8 5 7 syl φN
9 1 2 3 4 8 dchrplusg φ·˙=f×D×D
10 9 oveqd φX·˙Y=Xf×D×DY
11 5 6 ofmresval φXf×D×DY=X×fY
12 10 11 eqtrd φX·˙Y=X×fY