Metamath Proof Explorer


Theorem decpmate

Description: An entry of the matrix consisting of the coefficients in the entries of a polynomial matrix is the corresponding coefficient in the polynomial entry of the given matrix. (Contributed by AV, 28-Sep-2019) (Revised by AV, 2-Dec-2019)

Ref Expression
Hypotheses decpmate.p P=Poly1R
decpmate.c C=NMatP
decpmate.b B=BaseC
Assertion decpmate RVMBK0INJNIMdecompPMatKJ=coe1IMJK

Proof

Step Hyp Ref Expression
1 decpmate.p P=Poly1R
2 decpmate.c C=NMatP
3 decpmate.b B=BaseC
4 2 3 decpmatval MBK0MdecompPMatK=iN,jNcoe1iMjK
5 4 3adant1 RVMBK0MdecompPMatK=iN,jNcoe1iMjK
6 5 adantr RVMBK0INJNMdecompPMatK=iN,jNcoe1iMjK
7 oveq12 i=Ij=JiMj=IMJ
8 7 fveq2d i=Ij=Jcoe1iMj=coe1IMJ
9 8 fveq1d i=Ij=Jcoe1iMjK=coe1IMJK
10 9 adantl RVMBK0INJNi=Ij=Jcoe1iMjK=coe1IMJK
11 simprl RVMBK0INJNIN
12 simprr RVMBK0INJNJN
13 fvexd RVMBK0INJNcoe1IMJKV
14 6 10 11 12 13 ovmpod RVMBK0INJNIMdecompPMatKJ=coe1IMJK