Metamath Proof Explorer


Theorem deg1addlt

Description: If both factors have degree bounded by L , then the sum of the polynomials also has degree bounded by L . See also deg1addle . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses deg1addlt.y Y=Poly1R
deg1addlt.d D=deg1R
deg1addlt.r φRRing
deg1addlt.b B=BaseY
deg1addlt.p +˙=+Y
deg1addlt.f φFB
deg1addlt.g φGB
deg1addlt.l φL*
deg1addlt.1 φDF<L
deg1addlt.2 φDG<L
Assertion deg1addlt φDF+˙G<L

Proof

Step Hyp Ref Expression
1 deg1addlt.y Y=Poly1R
2 deg1addlt.d D=deg1R
3 deg1addlt.r φRRing
4 deg1addlt.b B=BaseY
5 deg1addlt.p +˙=+Y
6 deg1addlt.f φFB
7 deg1addlt.g φGB
8 deg1addlt.l φL*
9 deg1addlt.1 φDF<L
10 deg1addlt.2 φDG<L
11 1 ply1ring RRingYRing
12 3 11 syl φYRing
13 4 5 ringacl YRingFBGBF+˙GB
14 12 6 7 13 syl3anc φF+˙GB
15 2 1 4 deg1xrcl F+˙GBDF+˙G*
16 14 15 syl φDF+˙G*
17 2 1 4 deg1xrcl GBDG*
18 7 17 syl φDG*
19 2 1 4 deg1xrcl FBDF*
20 6 19 syl φDF*
21 18 20 ifcld φifDFDGDGDF*
22 1 2 3 4 5 6 7 deg1addle φDF+˙GifDFDGDGDF
23 xrmaxlt DF*DG*L*ifDFDGDGDF<LDF<LDG<L
24 20 18 8 23 syl3anc φifDFDGDGDF<LDF<LDG<L
25 9 10 24 mpbir2and φifDFDGDGDF<L
26 16 21 8 22 25 xrlelttrd φDF+˙G<L