Description: If both factors have degree bounded by L , then the sum of the polynomials also has degree bounded by L . See also deg1addle . (Contributed by Thierry Arnoux, 2-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1addlt.y | |
|
deg1addlt.d | |
||
deg1addlt.r | |
||
deg1addlt.b | |
||
deg1addlt.p | |
||
deg1addlt.f | |
||
deg1addlt.g | |
||
deg1addlt.l | |
||
deg1addlt.1 | |
||
deg1addlt.2 | |
||
Assertion | deg1addlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addlt.y | |
|
2 | deg1addlt.d | |
|
3 | deg1addlt.r | |
|
4 | deg1addlt.b | |
|
5 | deg1addlt.p | |
|
6 | deg1addlt.f | |
|
7 | deg1addlt.g | |
|
8 | deg1addlt.l | |
|
9 | deg1addlt.1 | |
|
10 | deg1addlt.2 | |
|
11 | 1 | ply1ring | |
12 | 3 11 | syl | |
13 | 4 5 | ringacl | |
14 | 12 6 7 13 | syl3anc | |
15 | 2 1 4 | deg1xrcl | |
16 | 14 15 | syl | |
17 | 2 1 4 | deg1xrcl | |
18 | 7 17 | syl | |
19 | 2 1 4 | deg1xrcl | |
20 | 6 19 | syl | |
21 | 18 20 | ifcld | |
22 | 1 2 3 4 5 6 7 | deg1addle | |
23 | xrmaxlt | |
|
24 | 20 18 8 23 | syl3anc | |
25 | 9 10 24 | mpbir2and | |
26 | 16 21 8 22 25 | xrlelttrd | |