Metamath Proof Explorer


Theorem deg1sclle

Description: A scalar polynomial has nonpositive degree. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1sclle.d D=deg1R
deg1sclle.p P=Poly1R
deg1sclle.k K=BaseR
deg1sclle.a A=algScP
Assertion deg1sclle RRingFKDAF0

Proof

Step Hyp Ref Expression
1 deg1sclle.d D=deg1R
2 deg1sclle.p P=Poly1R
3 deg1sclle.k K=BaseR
4 deg1sclle.a A=algScP
5 2 4 3 ply1sclid RRingFKF=coe1AF0
6 5 fveq2d RRingFKAF=Acoe1AF0
7 eqid BaseP=BaseP
8 2 4 3 7 ply1sclcl RRingFKAFBaseP
9 1 2 7 4 deg1le0 RRingAFBasePDAF0AF=Acoe1AF0
10 8 9 syldan RRingFKDAF0AF=Acoe1AF0
11 6 10 mpbird RRingFKDAF0