Metamath Proof Explorer


Theorem demoivre

Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula , but restricted to nonnegative integer powers. See also demoivreALT for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007)

Ref Expression
Assertion demoivre ANcosA+isinAN=cosNA+isinNA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl iAiA
3 1 2 mpan AiA
4 efexp iANeNiA=eiAN
5 3 4 sylan ANeNiA=eiAN
6 zcn NN
7 mul12 NiANiA=iNA
8 1 7 mp3an2 NANiA=iNA
9 8 fveq2d NAeNiA=eiNA
10 mulcl NANA
11 efival NAeiNA=cosNA+isinNA
12 10 11 syl NAeiNA=cosNA+isinNA
13 9 12 eqtrd NAeNiA=cosNA+isinNA
14 13 ancoms ANeNiA=cosNA+isinNA
15 6 14 sylan2 ANeNiA=cosNA+isinNA
16 efival AeiA=cosA+isinA
17 16 oveq1d AeiAN=cosA+isinAN
18 17 adantr ANeiAN=cosA+isinAN
19 5 15 18 3eqtr3rd ANcosA+isinAN=cosNA+isinNA