Metamath Proof Explorer


Definition df-fae

Description: Define a builder for an 'almost everywhere' relation between functions, from relations between function values. In this definition, the range of f and g is enforced in order to ensure the resulting relation is a set. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Assertion df-fae ~ae=rV,mranmeasuresfg|fdomrdommgdomrdommxdomm|fxrgxm-ae.

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfae class~ae
1 vr setvarr
2 cvv classV
3 vm setvarm
4 cmeas classmeasures
5 4 crn classranmeasures
6 5 cuni classranmeasures
7 vf setvarf
8 vg setvarg
9 7 cv setvarf
10 1 cv setvarr
11 10 cdm classdomr
12 cmap class𝑚
13 3 cv setvarm
14 13 cdm classdomm
15 14 cuni classdomm
16 11 15 12 co classdomrdomm
17 9 16 wcel wfffdomrdomm
18 8 cv setvarg
19 18 16 wcel wffgdomrdomm
20 17 19 wa wfffdomrdommgdomrdomm
21 vx setvarx
22 21 cv setvarx
23 22 9 cfv classfx
24 22 18 cfv classgx
25 23 24 10 wbr wfffxrgx
26 25 21 15 crab classxdomm|fxrgx
27 cae classae
28 26 13 27 wbr wffxdomm|fxrgxm-ae.
29 20 28 wa wfffdomrdommgdomrdommxdomm|fxrgxm-ae.
30 29 7 8 copab classfg|fdomrdommgdomrdommxdomm|fxrgxm-ae.
31 1 3 2 6 30 cmpo classrV,mranmeasuresfg|fdomrdommgdomrdommxdomm|fxrgxm-ae.
32 0 31 wceq wff~ae=rV,mranmeasuresfg|fdomrdommgdomrdommxdomm|fxrgxm-ae.