Metamath Proof Explorer


Definition df-gf

Description: Define the Galois finite field of order p ^ n . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-gf GF = p , n /p / r 1 st r splitFld Poly 1 r / s var 1 r / x p n mulGrp s x - s x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgf class GF
1 vp setvar p
2 cprime class
3 vn setvar n
4 cn class
5 czn class ℤ/nℤ
6 1 cv setvar p
7 6 5 cfv class /p
8 vr setvar r
9 c1st class 1 st
10 8 cv setvar r
11 csf class splitFld
12 cpl1 class Poly 1
13 10 12 cfv class Poly 1 r
14 vs setvar s
15 cv1 class var 1
16 10 15 cfv class var 1 r
17 vx setvar x
18 cexp class ^
19 3 cv setvar n
20 6 19 18 co class p n
21 cmg class 𝑔
22 cmgp class mulGrp
23 14 cv setvar s
24 23 22 cfv class mulGrp s
25 24 21 cfv class mulGrp s
26 17 cv setvar x
27 20 26 25 co class p n mulGrp s x
28 csg class - 𝑔
29 23 28 cfv class - s
30 27 26 29 co class p n mulGrp s x - s x
31 17 16 30 csb class var 1 r / x p n mulGrp s x - s x
32 14 13 31 csb class Poly 1 r / s var 1 r / x p n mulGrp s x - s x
33 32 csn class Poly 1 r / s var 1 r / x p n mulGrp s x - s x
34 10 33 11 co class r splitFld Poly 1 r / s var 1 r / x p n mulGrp s x - s x
35 34 9 cfv class 1 st r splitFld Poly 1 r / s var 1 r / x p n mulGrp s x - s x
36 8 7 35 csb class /p / r 1 st r splitFld Poly 1 r / s var 1 r / x p n mulGrp s x - s x
37 1 3 2 4 36 cmpo class p , n /p / r 1 st r splitFld Poly 1 r / s var 1 r / x p n mulGrp s x - s x
38 0 37 wceq wff GF = p , n /p / r 1 st r splitFld Poly 1 r / s var 1 r / x p n mulGrp s x - s x