Metamath Proof Explorer


Definition df-gf

Description: Define the Galois finite field of order p ^ n . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-gf GF=p,n/p/r1strsplitFldPoly1r/svar1r/xpnmulGrpsx-sx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgf classGF
1 vp setvarp
2 cprime class
3 vn setvarn
4 cn class
5 czn classℤ/nℤ
6 1 cv setvarp
7 6 5 cfv class/p
8 vr setvarr
9 c1st class1st
10 8 cv setvarr
11 csf classsplitFld
12 cpl1 classPoly1
13 10 12 cfv classPoly1r
14 vs setvars
15 cv1 classvar1
16 10 15 cfv classvar1r
17 vx setvarx
18 cexp class^
19 3 cv setvarn
20 6 19 18 co classpn
21 cmg class𝑔
22 cmgp classmulGrp
23 14 cv setvars
24 23 22 cfv classmulGrps
25 24 21 cfv classmulGrps
26 17 cv setvarx
27 20 26 25 co classpnmulGrpsx
28 csg class-𝑔
29 23 28 cfv class-s
30 27 26 29 co classpnmulGrpsx-sx
31 17 16 30 csb classvar1r/xpnmulGrpsx-sx
32 14 13 31 csb classPoly1r/svar1r/xpnmulGrpsx-sx
33 32 csn classPoly1r/svar1r/xpnmulGrpsx-sx
34 10 33 11 co classrsplitFldPoly1r/svar1r/xpnmulGrpsx-sx
35 34 9 cfv class1strsplitFldPoly1r/svar1r/xpnmulGrpsx-sx
36 8 7 35 csb class/p/r1strsplitFldPoly1r/svar1r/xpnmulGrpsx-sx
37 1 3 2 4 36 cmpo classp,n/p/r1strsplitFldPoly1r/svar1r/xpnmulGrpsx-sx
38 0 37 wceq wffGF=p,n/p/r1strsplitFldPoly1r/svar1r/xpnmulGrpsx-sx