Metamath Proof Explorer


Definition df-mitp

Description: Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mitp mItp=tVamSAtgimVarstamUVtmTypetiιx|mmVLtg=mmVarstax=mmEvalta

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmitp classmItp
1 vt setvart
2 cvv classV
3 va setvara
4 cmsa classmSA
5 1 cv setvart
6 5 4 cfv classmSAt
7 vg setvarg
8 vi setvari
9 cmvrs classmVars
10 5 9 cfv classmVarst
11 3 cv setvara
12 11 10 cfv classmVarsta
13 cmuv classmUV
14 5 13 cfv classmUVt
15 cmty classmType
16 5 15 cfv classmTypet
17 8 cv setvari
18 17 16 cfv classmTypeti
19 18 csn classmTypeti
20 14 19 cima classmUVtmTypeti
21 8 12 20 cixp classimVarstamUVtmTypeti
22 vx setvarx
23 vm setvarm
24 cmvl classmVL
25 5 24 cfv classmVLt
26 7 cv setvarg
27 23 cv setvarm
28 27 12 cres classmmVarsta
29 26 28 wceq wffg=mmVarsta
30 22 cv setvarx
31 cmevl classmEval
32 5 31 cfv classmEvalt
33 27 11 32 co classmmEvalta
34 30 33 wceq wffx=mmEvalta
35 29 34 wa wffg=mmVarstax=mmEvalta
36 35 23 25 wrex wffmmVLtg=mmVarstax=mmEvalta
37 36 22 cio classιx|mmVLtg=mmVarstax=mmEvalta
38 7 21 37 cmpt classgimVarstamUVtmTypetiιx|mmVLtg=mmVarstax=mmEvalta
39 3 6 38 cmpt classamSAtgimVarstamUVtmTypetiιx|mmVLtg=mmVarstax=mmEvalta
40 1 2 39 cmpt classtVamSAtgimVarstamUVtmTypetiιx|mmVLtg=mmVarstax=mmEvalta
41 0 40 wceq wffmItp=tVamSAtgimVarstamUVtmTypetiιx|mmVLtg=mmVarstax=mmEvalta