Metamath Proof Explorer


Definition df-mzpcl

Description: Define the polynomially closed function rings over an arbitrary index set v . The set ( mzPolyCldv ) contains all sets of functions from ( ZZ ^m v ) to ZZ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself ( mzPolyv ) ; see df-mzp . (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion df-mzpcl mzPolyCld=vVp𝒫v|iv×ipjvxvxjpfpgpf+fgpf×fgp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmzpcl classmzPolyCld
1 vv setvarv
2 cvv classV
3 vp setvarp
4 cz class
5 cmap class𝑚
6 1 cv setvarv
7 4 6 5 co classv
8 4 7 5 co classv
9 8 cpw class𝒫v
10 vi setvari
11 10 cv setvari
12 11 csn classi
13 7 12 cxp classv×i
14 3 cv setvarp
15 13 14 wcel wffv×ip
16 15 10 4 wral wffiv×ip
17 vj setvarj
18 vx setvarx
19 18 cv setvarx
20 17 cv setvarj
21 20 19 cfv classxj
22 18 7 21 cmpt classxvxj
23 22 14 wcel wffxvxjp
24 23 17 6 wral wffjvxvxjp
25 16 24 wa wffiv×ipjvxvxjp
26 vf setvarf
27 vg setvarg
28 26 cv setvarf
29 caddc class+
30 29 cof classf+
31 27 cv setvarg
32 28 31 30 co classf+fg
33 32 14 wcel wfff+fgp
34 cmul class×
35 34 cof classf×
36 28 31 35 co classf×fg
37 36 14 wcel wfff×fgp
38 33 37 wa wfff+fgpf×fgp
39 38 27 14 wral wffgpf+fgpf×fgp
40 39 26 14 wral wfffpgpf+fgpf×fgp
41 25 40 wa wffiv×ipjvxvxjpfpgpf+fgpf×fgp
42 41 3 9 crab classp𝒫v|iv×ipjvxvxjpfpgpf+fgpf×fgp
43 1 2 42 cmpt classvVp𝒫v|iv×ipjvxvxjpfpgpf+fgpf×fgp
44 0 43 wceq wffmzPolyCld=vVp𝒫v|iv×ipjvxvxjpfpgpf+fgpf×fgp