Metamath Proof Explorer


Definition df-qpa

Description: Define the completion of the p -adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the n -th set the collection of polynomials with degree less than n and with coefficients < ( p ^ n ) ). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial x ^ ( p ^ n ) - x , which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion df-qpa p=ppp/rrpolySplitLimnfPoly1r|rdeg1fndrancoe1fd-100n

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqpa classp
1 vp setvarp
2 cprime class
3 cqp classp
4 1 cv setvarp
5 4 3 cfv classpp
6 vr setvarr
7 6 cv setvarr
8 cpsl classpolySplitLim
9 vn setvarn
10 cn class
11 vf setvarf
12 cpl1 classPoly1
13 7 12 cfv classPoly1r
14 cdg1 classdeg1
15 11 cv setvarf
16 7 15 14 co classrdeg1f
17 cle class
18 9 cv setvarn
19 16 18 17 wbr wffrdeg1fn
20 vd setvard
21 cco1 classcoe1
22 15 21 cfv classcoe1f
23 22 crn classrancoe1f
24 20 cv setvard
25 24 ccnv classd-1
26 cz class
27 cc0 class0
28 27 csn class0
29 26 28 cdif class0
30 25 29 cima classd-10
31 cfz class
32 27 18 31 co class0n
33 30 32 wss wffd-100n
34 33 20 23 wral wffdrancoe1fd-100n
35 19 34 wa wffrdeg1fndrancoe1fd-100n
36 35 11 13 crab classfPoly1r|rdeg1fndrancoe1fd-100n
37 9 10 36 cmpt classnfPoly1r|rdeg1fndrancoe1fd-100n
38 7 37 8 co classrpolySplitLimnfPoly1r|rdeg1fndrancoe1fd-100n
39 6 5 38 csb classpp/rrpolySplitLimnfPoly1r|rdeg1fndrancoe1fd-100n
40 1 2 39 cmpt classppp/rrpolySplitLimnfPoly1r|rdeg1fndrancoe1fd-100n
41 0 40 wceq wffp=ppp/rrpolySplitLimnfPoly1r|rdeg1fndrancoe1fd-100n