Metamath Proof Explorer


Definition df-qp

Description: Define the p -adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-qp p=ph0p1|xranh-10x/bBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnkndxfg|fgbkfkp+1k<kgkp+1ktoNrmGrpfbiff=×00psupf-10<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqp classp
1 vp setvarp
2 cprime class
3 vh setvarh
4 cz class
5 cmap class𝑚
6 cc0 class0
7 cfz class
8 1 cv setvarp
9 cmin class
10 c1 class1
11 8 10 9 co classp1
12 6 11 7 co class0p1
13 4 12 5 co class0p1
14 vx setvarx
15 cuz class
16 15 crn classran
17 3 cv setvarh
18 17 ccnv classh-1
19 6 csn class0
20 4 19 cdif class0
21 18 20 cima classh-10
22 14 cv setvarx
23 21 22 wss wffh-10x
24 23 14 16 wrex wffxranh-10x
25 24 3 13 crab classh0p1|xranh-10x
26 vb setvarb
27 cbs classBase
28 cnx classndx
29 28 27 cfv classBasendx
30 26 cv setvarb
31 29 30 cop classBasendxb
32 cplusg class+𝑔
33 28 32 cfv class+ndx
34 vf setvarf
35 vg setvarg
36 crqp class/p
37 8 36 cfv class/pp
38 34 cv setvarf
39 caddc class+
40 39 cof classf+
41 35 cv setvarg
42 38 41 40 co classf+fg
43 42 37 cfv class/ppf+fg
44 34 35 30 30 43 cmpo classfb,gb/ppf+fg
45 33 44 cop class+ndxfb,gb/ppf+fg
46 cmulr class𝑟
47 28 46 cfv classndx
48 vn setvarn
49 vk setvark
50 49 cv setvark
51 50 38 cfv classfk
52 cmul class×
53 48 cv setvarn
54 53 50 9 co classnk
55 54 41 cfv classgnk
56 51 55 52 co classfkgnk
57 4 56 49 csu classkfkgnk
58 48 4 57 cmpt classnkfkgnk
59 58 37 cfv class/ppnkfkgnk
60 34 35 30 30 59 cmpo classfb,gb/ppnkfkgnk
61 47 60 cop classndxfb,gb/ppnkfkgnk
62 31 45 61 ctp classBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnk
63 cple classle
64 28 63 cfv classndx
65 38 41 cpr classfg
66 65 30 wss wfffgb
67 50 cneg classk
68 67 38 cfv classfk
69 8 10 39 co classp+1
70 cexp class^
71 69 67 70 co classp+1k
72 68 71 52 co classfkp+1k
73 4 72 49 csu classkfkp+1k
74 clt class<
75 67 41 cfv classgk
76 75 71 52 co classgkp+1k
77 4 76 49 csu classkgkp+1k
78 73 77 74 wbr wffkfkp+1k<kgkp+1k
79 66 78 wa wfffgbkfkp+1k<kgkp+1k
80 79 34 35 copab classfg|fgbkfkp+1k<kgkp+1k
81 64 80 cop classndxfg|fgbkfkp+1k<kgkp+1k
82 81 csn classndxfg|fgbkfkp+1k<kgkp+1k
83 62 82 cun classBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnkndxfg|fgbkfkp+1k<kgkp+1k
84 ctng classtoNrmGrp
85 4 19 cxp class×0
86 38 85 wceq wfff=×0
87 38 ccnv classf-1
88 87 20 cima classf-10
89 cr class
90 88 89 74 cinf classsupf-10<
91 90 cneg classsupf-10<
92 8 91 70 co classpsupf-10<
93 86 6 92 cif classiff=×00psupf-10<
94 34 30 93 cmpt classfbiff=×00psupf-10<
95 83 94 84 co classBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnkndxfg|fgbkfkp+1k<kgkp+1ktoNrmGrpfbiff=×00psupf-10<
96 26 25 95 csb classh0p1|xranh-10x/bBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnkndxfg|fgbkfkp+1k<kgkp+1ktoNrmGrpfbiff=×00psupf-10<
97 1 2 96 cmpt classph0p1|xranh-10x/bBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnkndxfg|fgbkfkp+1k<kgkp+1ktoNrmGrpfbiff=×00psupf-10<
98 0 97 wceq wffp=ph0p1|xranh-10x/bBasendxb+ndxfb,gb/ppf+fgndxfb,gb/ppnkfkgnkndxfg|fgbkfkp+1k<kgkp+1ktoNrmGrpfbiff=×00psupf-10<