Metamath Proof Explorer


Definition df-qp

Description: Define the p -adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014) (Revised by AV, 10-Oct-2021)

Ref Expression
Assertion df-qp p = p h 0 p 1 | x ran h -1 0 x / b Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k ndx f g | f g b k f k p + 1 k < k g k p + 1 k toNrmGrp f b if f = × 0 0 p sup f -1 0 <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqp class p
1 vp setvar p
2 cprime class
3 vh setvar h
4 cz class
5 cmap class 𝑚
6 cc0 class 0
7 cfz class
8 1 cv setvar p
9 cmin class
10 c1 class 1
11 8 10 9 co class p 1
12 6 11 7 co class 0 p 1
13 4 12 5 co class 0 p 1
14 vx setvar x
15 cuz class
16 15 crn class ran
17 3 cv setvar h
18 17 ccnv class h -1
19 6 csn class 0
20 4 19 cdif class 0
21 18 20 cima class h -1 0
22 14 cv setvar x
23 21 22 wss wff h -1 0 x
24 23 14 16 wrex wff x ran h -1 0 x
25 24 3 13 crab class h 0 p 1 | x ran h -1 0 x
26 vb setvar b
27 cbs class Base
28 cnx class ndx
29 28 27 cfv class Base ndx
30 26 cv setvar b
31 29 30 cop class Base ndx b
32 cplusg class + 𝑔
33 28 32 cfv class + ndx
34 vf setvar f
35 vg setvar g
36 crqp class /p
37 8 36 cfv class /p p
38 34 cv setvar f
39 caddc class +
40 39 cof class f +
41 35 cv setvar g
42 38 41 40 co class f + f g
43 42 37 cfv class /p p f + f g
44 34 35 30 30 43 cmpo class f b , g b /p p f + f g
45 33 44 cop class + ndx f b , g b /p p f + f g
46 cmulr class 𝑟
47 28 46 cfv class ndx
48 vn setvar n
49 vk setvar k
50 49 cv setvar k
51 50 38 cfv class f k
52 cmul class ×
53 48 cv setvar n
54 53 50 9 co class n k
55 54 41 cfv class g n k
56 51 55 52 co class f k g n k
57 4 56 49 csu class k f k g n k
58 48 4 57 cmpt class n k f k g n k
59 58 37 cfv class /p p n k f k g n k
60 34 35 30 30 59 cmpo class f b , g b /p p n k f k g n k
61 47 60 cop class ndx f b , g b /p p n k f k g n k
62 31 45 61 ctp class Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k
63 cple class le
64 28 63 cfv class ndx
65 38 41 cpr class f g
66 65 30 wss wff f g b
67 50 cneg class k
68 67 38 cfv class f k
69 8 10 39 co class p + 1
70 cexp class ^
71 69 67 70 co class p + 1 k
72 68 71 52 co class f k p + 1 k
73 4 72 49 csu class k f k p + 1 k
74 clt class <
75 67 41 cfv class g k
76 75 71 52 co class g k p + 1 k
77 4 76 49 csu class k g k p + 1 k
78 73 77 74 wbr wff k f k p + 1 k < k g k p + 1 k
79 66 78 wa wff f g b k f k p + 1 k < k g k p + 1 k
80 79 34 35 copab class f g | f g b k f k p + 1 k < k g k p + 1 k
81 64 80 cop class ndx f g | f g b k f k p + 1 k < k g k p + 1 k
82 81 csn class ndx f g | f g b k f k p + 1 k < k g k p + 1 k
83 62 82 cun class Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k ndx f g | f g b k f k p + 1 k < k g k p + 1 k
84 ctng class toNrmGrp
85 4 19 cxp class × 0
86 38 85 wceq wff f = × 0
87 38 ccnv class f -1
88 87 20 cima class f -1 0
89 cr class
90 88 89 74 cinf class sup f -1 0 <
91 90 cneg class sup f -1 0 <
92 8 91 70 co class p sup f -1 0 <
93 86 6 92 cif class if f = × 0 0 p sup f -1 0 <
94 34 30 93 cmpt class f b if f = × 0 0 p sup f -1 0 <
95 83 94 84 co class Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k ndx f g | f g b k f k p + 1 k < k g k p + 1 k toNrmGrp f b if f = × 0 0 p sup f -1 0 <
96 26 25 95 csb class h 0 p 1 | x ran h -1 0 x / b Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k ndx f g | f g b k f k p + 1 k < k g k p + 1 k toNrmGrp f b if f = × 0 0 p sup f -1 0 <
97 1 2 96 cmpt class p h 0 p 1 | x ran h -1 0 x / b Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k ndx f g | f g b k f k p + 1 k < k g k p + 1 k toNrmGrp f b if f = × 0 0 p sup f -1 0 <
98 0 97 wceq wff p = p h 0 p 1 | x ran h -1 0 x / b Base ndx b + ndx f b , g b /p p f + f g ndx f b , g b /p p n k f k g n k ndx f g | f g b k f k p + 1 k < k g k p + 1 k toNrmGrp f b if f = × 0 0 p sup f -1 0 <