Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Peter Mazsa Reflexivity df-refs  
				
		 
		
			
		 
		Description:   Define the class of all reflexive sets.  It is used only by df-refrels  .
     We use subset relation _S  ( df-ssr  ) here to be able to define
     converse reflexivity ( df-cnvrefs  ), see also the comment of df-ssr  .
     The elements of this class are not necessarily relations (versus
     df-refrels  ).
     Note the similarity of Definitions df-refs  , df-syms  and df-trs  ,
     cf. comments of dfrefrels2  .  (Contributed by Peter Mazsa , 19-Jul-2019) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-refs   ⊢   Refs  =   x   |   I  ∩    dom  ⁡  x    ×   ran  ⁡  x      S   x  ∩    dom  ⁡  x    ×   ran  ⁡  x            
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							crefs  class  Refs    
						
							1 
								
							 
							vx  setvar  x    
						
							2 
								
							 
							cid  class  I    
						
							3 
								1 
							 
							cv  setvar  x    
						
							4 
								3 
							 
							cdm  class   dom  ⁡  x      
						
							5 
								3 
							 
							crn  class   ran  ⁡  x      
						
							6 
								4  5 
							 
							cxp  class    dom  ⁡  x    ×   ran  ⁡  x        
						
							7 
								2  6 
							 
							cin  class   I  ∩    dom  ⁡  x    ×   ran  ⁡  x         
						
							8 
								
							 
							cssr  class  S    
						
							9 
								3  6 
							 
							cin  class   x  ∩    dom  ⁡  x    ×   ran  ⁡  x         
						
							10 
								7  9  8 
							 
							wbr  wff   I  ∩    dom  ⁡  x    ×   ran  ⁡  x      S   x  ∩    dom  ⁡  x    ×   ran  ⁡  x         
						
							11 
								10  1 
							 
							cab  class   x   |   I  ∩    dom  ⁡  x    ×   ran  ⁡  x      S   x  ∩    dom  ⁡  x    ×   ran  ⁡  x          
						
							12 
								0  11 
							 
							wceq  wff   Refs  =   x   |   I  ∩    dom  ⁡  x    ×   ran  ⁡  x      S   x  ∩    dom  ⁡  x    ×   ran  ⁡  x