Metamath Proof Explorer


Theorem dfafv23

Description: A definition of function value in terms of iota, analogous to dffv3 . (Contributed by AV, 6-Sep-2022)

Ref Expression
Assertion dfafv23 FdefAtAF''''A=ιx|xFA

Proof

Step Hyp Ref Expression
1 dfatafv2iota FdefAtAF''''A=ιx|AFx
2 dfdfat2 FdefAtAAdomF∃!xAFx
3 2 simplbi FdefAtAAdomF
4 elimasng AdomFxVxFAAxF
5 3 4 sylan FdefAtAxVxFAAxF
6 df-br AFxAxF
7 5 6 bitr4di FdefAtAxVxFAAFx
8 7 elvd FdefAtAxFAAFx
9 8 iotabidv FdefAtAιx|xFA=ιx|AFx
10 1 9 eqtr4d FdefAtAF''''A=ιx|xFA