Metamath Proof Explorer


Theorem dfarea

Description: Rewrite df-area self-referentially. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion dfarea area = s dom area vol s x dx

Proof

Step Hyp Ref Expression
1 df-area area = s y 𝒫 2 | x y x vol -1 x vol y x 𝐿 1 vol s x dx
2 itgex vol s x dx V
3 2 1 dmmpti dom area = y 𝒫 2 | x y x vol -1 x vol y x 𝐿 1
4 3 mpteq1i s dom area vol s x dx = s y 𝒫 2 | x y x vol -1 x vol y x 𝐿 1 vol s x dx
5 1 4 eqtr4i area = s dom area vol s x dx