Metamath Proof Explorer


Theorem dfateq12d

Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses dfateq12d.1 φ F = G
dfateq12d.2 φ A = B
Assertion dfateq12d φ F defAt A G defAt B

Proof

Step Hyp Ref Expression
1 dfateq12d.1 φ F = G
2 dfateq12d.2 φ A = B
3 1 dmeqd φ dom F = dom G
4 2 3 eleq12d φ A dom F B dom G
5 2 sneqd φ A = B
6 1 5 reseq12d φ F A = G B
7 6 funeqd φ Fun F A Fun G B
8 4 7 anbi12d φ A dom F Fun F A B dom G Fun G B
9 df-dfat F defAt A A dom F Fun F A
10 df-dfat G defAt B B dom G Fun G B
11 8 9 10 3bitr4g φ F defAt A G defAt B