Metamath Proof Explorer


Theorem dfatsnafv2

Description: Singleton of function value, analogous to fnsnfv . (Contributed by AV, 7-Sep-2022)

Ref Expression
Assertion dfatsnafv2 FdefAtAF''''A=FA

Proof

Step Hyp Ref Expression
1 eqcom y=F''''AF''''A=y
2 dfatbrafv2b FdefAtAyVF''''A=yAFy
3 2 elvd FdefAtAF''''A=yAFy
4 1 3 bitrid FdefAtAy=F''''AAFy
5 4 abbidv FdefAtAy|y=F''''A=y|AFy
6 df-sn F''''A=y|y=F''''A
7 6 a1i FdefAtAF''''A=y|y=F''''A
8 dfdfat2 FdefAtAAdomF∃!xAFx
9 imasng AdomFFA=y|AFy
10 9 adantr AdomF∃!xAFxFA=y|AFy
11 8 10 sylbi FdefAtAFA=y|AFy
12 5 7 11 3eqtr4d FdefAtAF''''A=FA