Metamath Proof Explorer


Theorem dfblockliftmap2

Description: Alternate definition of the block lift map. (Contributed by Peter Mazsa, 29-Jan-2026)

Ref Expression
Assertion dfblockliftmap2 Could not format assertion : No typesetting found for |- ( R BlockLiftMap A ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-blockliftmap Could not format ( R BlockLiftMap A ) = ( m e. dom ( R |X. ( `' _E |` A ) ) |-> [ m ] ( R |X. ( `' _E |` A ) ) ) : No typesetting found for |- ( R BlockLiftMap A ) = ( m e. dom ( R |X. ( `' _E |` A ) ) |-> [ m ] ( R |X. ( `' _E |` A ) ) ) with typecode |-
2 elinel1 m A dom R m A
3 dmxrncnvepres2 dom R E -1 A = A dom R
4 2 3 eleq2s m dom R E -1 A m A
5 xrnres2 R E -1 A = R E -1 A
6 5 eceq2i m R E -1 A = m R E -1 A
7 elecreseq m A m R E -1 A = m R E -1
8 6 7 eqtr3id m A m R E -1 A = m R E -1
9 ecxrncnvep2 m A m R E -1 = m R × m
10 8 9 eqtrd m A m R E -1 A = m R × m
11 4 10 syl m dom R E -1 A m R E -1 A = m R × m
12 11 mpteq2ia m dom R E -1 A m R E -1 A = m dom R E -1 A m R × m
13 3 mpteq1i m dom R E -1 A m R × m = m A dom R m R × m
14 1 12 13 3eqtri Could not format ( R BlockLiftMap A ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) : No typesetting found for |- ( R BlockLiftMap A ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) with typecode |-