| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-blockliftmap |
|- ( R BlockLiftMap A ) = ( m e. dom ( R |X. ( `' _E |` A ) ) |-> [ m ] ( R |X. ( `' _E |` A ) ) ) |
| 2 |
|
elinel1 |
|- ( m e. ( A i^i ( dom R \ { (/) } ) ) -> m e. A ) |
| 3 |
|
dmxrncnvepres2 |
|- dom ( R |X. ( `' _E |` A ) ) = ( A i^i ( dom R \ { (/) } ) ) |
| 4 |
2 3
|
eleq2s |
|- ( m e. dom ( R |X. ( `' _E |` A ) ) -> m e. A ) |
| 5 |
|
xrnres2 |
|- ( ( R |X. `' _E ) |` A ) = ( R |X. ( `' _E |` A ) ) |
| 6 |
5
|
eceq2i |
|- [ m ] ( ( R |X. `' _E ) |` A ) = [ m ] ( R |X. ( `' _E |` A ) ) |
| 7 |
|
elecreseq |
|- ( m e. A -> [ m ] ( ( R |X. `' _E ) |` A ) = [ m ] ( R |X. `' _E ) ) |
| 8 |
6 7
|
eqtr3id |
|- ( m e. A -> [ m ] ( R |X. ( `' _E |` A ) ) = [ m ] ( R |X. `' _E ) ) |
| 9 |
|
ecxrncnvep2 |
|- ( m e. A -> [ m ] ( R |X. `' _E ) = ( [ m ] R X. m ) ) |
| 10 |
8 9
|
eqtrd |
|- ( m e. A -> [ m ] ( R |X. ( `' _E |` A ) ) = ( [ m ] R X. m ) ) |
| 11 |
4 10
|
syl |
|- ( m e. dom ( R |X. ( `' _E |` A ) ) -> [ m ] ( R |X. ( `' _E |` A ) ) = ( [ m ] R X. m ) ) |
| 12 |
11
|
mpteq2ia |
|- ( m e. dom ( R |X. ( `' _E |` A ) ) |-> [ m ] ( R |X. ( `' _E |` A ) ) ) = ( m e. dom ( R |X. ( `' _E |` A ) ) |-> ( [ m ] R X. m ) ) |
| 13 |
3
|
mpteq1i |
|- ( m e. dom ( R |X. ( `' _E |` A ) ) |-> ( [ m ] R X. m ) ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) |
| 14 |
1 12 13
|
3eqtri |
|- ( R BlockLiftMap A ) = ( m e. ( A i^i ( dom R \ { (/) } ) ) |-> ( [ m ] R X. m ) ) |