| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-blockliftmap |
⊢ ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) |
| 2 |
|
elinel1 |
⊢ ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) → 𝑚 ∈ 𝐴 ) |
| 3 |
|
dmxrncnvepres2 |
⊢ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) |
| 4 |
2 3
|
eleq2s |
⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → 𝑚 ∈ 𝐴 ) |
| 5 |
|
xrnres2 |
⊢ ( ( 𝑅 ⋉ ◡ E ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) |
| 6 |
5
|
eceq2i |
⊢ [ 𝑚 ] ( ( 𝑅 ⋉ ◡ E ) ↾ 𝐴 ) = [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) |
| 7 |
|
elecreseq |
⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( ( 𝑅 ⋉ ◡ E ) ↾ 𝐴 ) = [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) |
| 8 |
6 7
|
eqtr3id |
⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) ) |
| 9 |
|
ecxrncnvep2 |
⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ◡ E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 10 |
8 9
|
eqtrd |
⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) → [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 12 |
11
|
mpteq2ia |
⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ [ 𝑚 ] ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ) = ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 13 |
3
|
mpteq1i |
⊢ ( 𝑚 ∈ dom ( 𝑅 ⋉ ( ◡ E ↾ 𝐴 ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |
| 14 |
1 12 13
|
3eqtri |
⊢ ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) |