Metamath Proof Explorer


Theorem dfblockliftmap2

Description: Alternate definition of the block lift map. (Contributed by Peter Mazsa, 29-Jan-2026)

Ref Expression
Assertion dfblockliftmap2 ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) )

Proof

Step Hyp Ref Expression
1 df-blockliftmap ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↦ [ 𝑚 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) )
2 elinel1 ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) → 𝑚𝐴 )
3 dmxrncnvepres2 dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) )
4 2 3 eleq2s ( 𝑚 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) → 𝑚𝐴 )
5 xrnres2 ( ( 𝑅 E ) ↾ 𝐴 ) = ( 𝑅 ⋉ ( E ↾ 𝐴 ) )
6 5 eceq2i [ 𝑚 ] ( ( 𝑅 E ) ↾ 𝐴 ) = [ 𝑚 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) )
7 elecreseq ( 𝑚𝐴 → [ 𝑚 ] ( ( 𝑅 E ) ↾ 𝐴 ) = [ 𝑚 ] ( 𝑅 E ) )
8 6 7 eqtr3id ( 𝑚𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = [ 𝑚 ] ( 𝑅 E ) )
9 ecxrncnvep2 ( 𝑚𝐴 → [ 𝑚 ] ( 𝑅 E ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) )
10 8 9 eqtrd ( 𝑚𝐴 → [ 𝑚 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) )
11 4 10 syl ( 𝑚 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) → [ 𝑚 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) = ( [ 𝑚 ] 𝑅 × 𝑚 ) )
12 11 mpteq2ia ( 𝑚 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↦ [ 𝑚 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) = ( 𝑚 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) )
13 3 mpteq1i ( 𝑚 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) )
14 1 12 13 3eqtri ( 𝑅 BlockLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∖ { ∅ } ) ) ↦ ( [ 𝑚 ] 𝑅 × 𝑚 ) )