Metamath Proof Explorer


Theorem dfcoels

Description: Alternate definition of the class of coelements on the class A . (Contributed by Peter Mazsa, 20-Apr-2019)

Ref Expression
Assertion dfcoels A=xy|uAxuyu

Proof

Step Hyp Ref Expression
1 df-coels A=E-1A
2 1cossres E-1A=xy|uAuE-1xuE-1y
3 brcnvep uVuE-1xxu
4 3 elv uE-1xxu
5 brcnvep uVuE-1yyu
6 5 elv uE-1yyu
7 4 6 anbi12i uE-1xuE-1yxuyu
8 7 rexbii uAuE-1xuE-1yuAxuyu
9 8 opabbii xy|uAuE-1xuE-1y=xy|uAxuyu
10 1 2 9 3eqtri A=xy|uAxuyu