Metamath Proof Explorer


Theorem dfdm2

Description: Alternate definition of domain df-dm that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010)

Ref Expression
Assertion dfdm2 domA=A-1A

Proof

Step Hyp Ref Expression
1 cnvco A-1A-1=A-1A-1-1
2 cocnvcnv2 A-1A-1-1=A-1A
3 1 2 eqtri A-1A-1=A-1A
4 3 unieqi A-1A-1=A-1A
5 4 unieqi A-1A-1=A-1A
6 unidmrn A-1A-1=domA-1AranA-1A
7 5 6 eqtr3i A-1A=domA-1AranA-1A
8 df-rn ranA=domA-1
9 8 eqcomi domA-1=ranA
10 dmcoeq domA-1=ranAdomA-1A=domA
11 9 10 ax-mp domA-1A=domA
12 rncoeq domA-1=ranAranA-1A=ranA-1
13 9 12 ax-mp ranA-1A=ranA-1
14 dfdm4 domA=ranA-1
15 13 14 eqtr4i ranA-1A=domA
16 11 15 uneq12i domA-1AranA-1A=domAdomA
17 unidm domAdomA=domA
18 7 16 17 3eqtrri domA=A-1A