Metamath Proof Explorer


Theorem dfdmf

Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses dfdmf.1 _xA
dfdmf.2 _yA
Assertion dfdmf domA=x|yxAy

Proof

Step Hyp Ref Expression
1 dfdmf.1 _xA
2 dfdmf.2 _yA
3 df-dm domA=w|vwAv
4 nfcv _yw
5 nfcv _yv
6 4 2 5 nfbr ywAv
7 nfv vwAy
8 breq2 v=ywAvwAy
9 6 7 8 cbvexv1 vwAvywAy
10 9 abbii w|vwAv=w|ywAy
11 nfcv _xw
12 nfcv _xy
13 11 1 12 nfbr xwAy
14 13 nfex xywAy
15 nfv wyxAy
16 breq1 w=xwAyxAy
17 16 exbidv w=xywAyyxAy
18 14 15 17 cbvabw w|ywAy=x|yxAy
19 3 10 18 3eqtri domA=x|yxAy