Metamath Proof Explorer


Theorem dfeldisj3

Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion dfeldisj3 ElDisj A u A v A x u v u = v

Proof

Step Hyp Ref Expression
1 df-eldisj ElDisj A Disj E -1 A
2 relres Rel E -1 A
3 dfdisjALTV3 Disj E -1 A u v x u E -1 A x v E -1 A x u = v Rel E -1 A
4 2 3 mpbiran2 Disj E -1 A u v x u E -1 A x v E -1 A x u = v
5 an4 u A x u v A x v u A v A x u x v
6 brcnvepres u V x V u E -1 A x u A x u
7 6 el2v u E -1 A x u A x u
8 brcnvepres v V x V v E -1 A x v A x v
9 8 el2v v E -1 A x v A x v
10 7 9 anbi12i u E -1 A x v E -1 A x u A x u v A x v
11 elin x u v x u x v
12 11 anbi2i u A v A x u v u A v A x u x v
13 5 10 12 3bitr4i u E -1 A x v E -1 A x u A v A x u v
14 df-3an u A v A x u v u A v A x u v
15 13 14 bitr4i u E -1 A x v E -1 A x u A v A x u v
16 15 imbi1i u E -1 A x v E -1 A x u = v u A v A x u v u = v
17 16 3albii u v x u E -1 A x v E -1 A x u = v u v x u A v A x u v u = v
18 1 4 17 3bitri ElDisj A u v x u A v A x u v u = v
19 r3al u A v A x u v u = v u v x u A v A x u v u = v
20 18 19 bitr4i ElDisj A u A v A x u v u = v