Metamath Proof Explorer


Theorem dfeldisj3

Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion dfeldisj3 ( ElDisj 𝐴 ↔ ∀ 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) 𝑢 = 𝑣 )

Proof

Step Hyp Ref Expression
1 df-eldisj ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴 ) )
2 relres Rel ( E ↾ 𝐴 )
3 dfdisjALTV3 ( Disj ( E ↾ 𝐴 ) ↔ ( ∀ 𝑢𝑣𝑥 ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ∧ Rel ( E ↾ 𝐴 ) ) )
4 2 3 mpbiran2 ( Disj ( E ↾ 𝐴 ) ↔ ∀ 𝑢𝑣𝑥 ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) )
5 an4 ( ( ( 𝑢𝐴𝑥𝑢 ) ∧ ( 𝑣𝐴𝑥𝑣 ) ) ↔ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑥𝑢𝑥𝑣 ) ) )
6 brcnvepres ( ( 𝑢 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑢 ( E ↾ 𝐴 ) 𝑥 ↔ ( 𝑢𝐴𝑥𝑢 ) ) )
7 6 el2v ( 𝑢 ( E ↾ 𝐴 ) 𝑥 ↔ ( 𝑢𝐴𝑥𝑢 ) )
8 brcnvepres ( ( 𝑣 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑣 ( E ↾ 𝐴 ) 𝑥 ↔ ( 𝑣𝐴𝑥𝑣 ) ) )
9 8 el2v ( 𝑣 ( E ↾ 𝐴 ) 𝑥 ↔ ( 𝑣𝐴𝑥𝑣 ) )
10 7 9 anbi12i ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) ↔ ( ( 𝑢𝐴𝑥𝑢 ) ∧ ( 𝑣𝐴𝑥𝑣 ) ) )
11 elin ( 𝑥 ∈ ( 𝑢𝑣 ) ↔ ( 𝑥𝑢𝑥𝑣 ) )
12 11 anbi2i ( ( ( 𝑢𝐴𝑣𝐴 ) ∧ 𝑥 ∈ ( 𝑢𝑣 ) ) ↔ ( ( 𝑢𝐴𝑣𝐴 ) ∧ ( 𝑥𝑢𝑥𝑣 ) ) )
13 5 10 12 3bitr4i ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) ↔ ( ( 𝑢𝐴𝑣𝐴 ) ∧ 𝑥 ∈ ( 𝑢𝑣 ) ) )
14 df-3an ( ( 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) ) ↔ ( ( 𝑢𝐴𝑣𝐴 ) ∧ 𝑥 ∈ ( 𝑢𝑣 ) ) )
15 13 14 bitr4i ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) ↔ ( 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) ) )
16 15 imbi1i ( ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ↔ ( ( 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) ) → 𝑢 = 𝑣 ) )
17 16 3albii ( ∀ 𝑢𝑣𝑥 ( ( 𝑢 ( E ↾ 𝐴 ) 𝑥𝑣 ( E ↾ 𝐴 ) 𝑥 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢𝑣𝑥 ( ( 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) ) → 𝑢 = 𝑣 ) )
18 1 4 17 3bitri ( ElDisj 𝐴 ↔ ∀ 𝑢𝑣𝑥 ( ( 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) ) → 𝑢 = 𝑣 ) )
19 r3al ( ∀ 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) 𝑢 = 𝑣 ↔ ∀ 𝑢𝑣𝑥 ( ( 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) ) → 𝑢 = 𝑣 ) )
20 18 19 bitr4i ( ElDisj 𝐴 ↔ ∀ 𝑢𝐴𝑣𝐴𝑥 ∈ ( 𝑢𝑣 ) 𝑢 = 𝑣 )