Metamath Proof Explorer


Theorem dfeldisj3

Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion dfeldisj3 ElDisjAuAvAxuvu=v

Proof

Step Hyp Ref Expression
1 df-eldisj ElDisjADisjE-1A
2 relres RelE-1A
3 dfdisjALTV3 DisjE-1AuvxuE-1AxvE-1Axu=vRelE-1A
4 2 3 mpbiran2 DisjE-1AuvxuE-1AxvE-1Axu=v
5 an4 uAxuvAxvuAvAxuxv
6 brcnvepres uVxVuE-1AxuAxu
7 6 el2v uE-1AxuAxu
8 brcnvepres vVxVvE-1AxvAxv
9 8 el2v vE-1AxvAxv
10 7 9 anbi12i uE-1AxvE-1AxuAxuvAxv
11 elin xuvxuxv
12 11 anbi2i uAvAxuvuAvAxuxv
13 5 10 12 3bitr4i uE-1AxvE-1AxuAvAxuv
14 df-3an uAvAxuvuAvAxuv
15 13 14 bitr4i uE-1AxvE-1AxuAvAxuv
16 15 imbi1i uE-1AxvE-1Axu=vuAvAxuvu=v
17 16 3albii uvxuE-1AxvE-1Axu=vuvxuAvAxuvu=v
18 1 4 17 3bitri ElDisjAuvxuAvAxuvu=v
19 r3al uAvAxuvu=vuvxuAvAxuvu=v
20 18 19 bitr4i ElDisjAuAvAxuvu=v