Metamath Proof Explorer


Theorem dferALTV2

Description: Equivalence relation with natural domain predicate, see the comment of df-ers . (Contributed by Peter Mazsa, 26-Jun-2021) (Revised by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion dferALTV2 RErALTVAEqvRelRdomR/R=A

Proof

Step Hyp Ref Expression
1 df-erALTV RErALTVAEqvRelRRDomainQsA
2 df-dmqs RDomainQsAdomR/R=A
3 2 anbi2i EqvRelRRDomainQsAEqvRelRdomR/R=A
4 1 3 bitri RErALTVAEqvRelRdomR/R=A