Metamath Proof Explorer


Theorem dff15

Description: A one-to-one function in terms of different arguments never having the same function value. (Contributed by BTernaryTau, 24-Oct-2023)

Ref Expression
Assertion dff15 F:A1-1BF:AB¬xAyAFx=Fyxy

Proof

Step Hyp Ref Expression
1 dff13 F:A1-1BF:ABxAyAFx=Fyx=y
2 iman Fx=Fyx=y¬Fx=Fy¬x=y
3 df-ne xy¬x=y
4 3 anbi2i Fx=FyxyFx=Fy¬x=y
5 2 4 xchbinxr Fx=Fyx=y¬Fx=Fyxy
6 5 2ralbii xAyAFx=Fyx=yxAyA¬Fx=Fyxy
7 ralnex2 xAyA¬Fx=Fyxy¬xAyAFx=Fyxy
8 6 7 bitri xAyAFx=Fyx=y¬xAyAFx=Fyxy
9 8 anbi2i F:ABxAyAFx=Fyx=yF:AB¬xAyAFx=Fyxy
10 1 9 bitri F:A1-1BF:AB¬xAyAFx=Fyxy