Metamath Proof Explorer


Theorem dffun6f

Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses dffun6f.1 _xA
dffun6f.2 _yA
Assertion dffun6f FunARelAx*yxAy

Proof

Step Hyp Ref Expression
1 dffun6f.1 _xA
2 dffun6f.2 _yA
3 dffun3 FunARelAwuvwAvv=u
4 nfcv _yw
5 nfcv _yv
6 4 2 5 nfbr ywAv
7 nfv vwAy
8 breq2 v=ywAvwAy
9 6 7 8 cbvmow *vwAv*ywAy
10 9 albii w*vwAvw*ywAy
11 df-mo *vwAvuvwAvv=u
12 11 albii w*vwAvwuvwAvv=u
13 nfcv _xw
14 nfcv _xy
15 13 1 14 nfbr xwAy
16 15 nfmov x*ywAy
17 nfv w*yxAy
18 breq1 w=xwAyxAy
19 18 mobidv w=x*ywAy*yxAy
20 16 17 19 cbvalv1 w*ywAyx*yxAy
21 10 12 20 3bitr3ri x*yxAywuvwAvv=u
22 21 anbi2i RelAx*yxAyRelAwuvwAvv=u
23 3 22 bitr4i FunARelAx*yxAy