Metamath Proof Explorer


Theorem dffun8

Description: Alternate definition of a function. One possibility for the definition of a function in Enderton p. 42. Compare dffun7 . (Contributed by NM, 4-Nov-2002) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion dffun8 FunARelAxdomA∃!yxAy

Proof

Step Hyp Ref Expression
1 dffun7 FunARelAxdomA*yxAy
2 moeu *yxAyyxAy∃!yxAy
3 vex xV
4 3 eldm xdomAyxAy
5 pm5.5 yxAyyxAy∃!yxAy∃!yxAy
6 4 5 sylbi xdomAyxAy∃!yxAy∃!yxAy
7 2 6 bitrid xdomA*yxAy∃!yxAy
8 7 ralbiia xdomA*yxAyxdomA∃!yxAy
9 8 anbi2i RelAxdomA*yxAyRelAxdomA∃!yxAy
10 1 9 bitri FunARelAxdomA∃!yxAy