Metamath Proof Explorer


Theorem dfid4

Description: The identity function expressed using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017)

Ref Expression
Assertion dfid4 I=xVx

Proof

Step Hyp Ref Expression
1 equcom x=yy=x
2 vex xV
3 2 biantrur y=xxVy=x
4 1 3 bitri x=yxVy=x
5 4 opabbii xy|x=y=xy|xVy=x
6 df-id I=xy|x=y
7 df-mpt xVx=xy|xVy=x
8 5 6 7 3eqtr4i I=xVx