Metamath Proof Explorer


Theorem dfii3

Description: Alternate definition of the unit interval. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis dfii3.1 J=TopOpenfld
Assertion dfii3 II=J𝑡01

Proof

Step Hyp Ref Expression
1 dfii3.1 J=TopOpenfld
2 cnxmet abs∞Met
3 unitssre 01
4 ax-resscn
5 3 4 sstri 01
6 eqid abs01×01=abs01×01
7 1 cnfldtopn J=MetOpenabs
8 df-ii II=MetOpenabs01×01
9 6 7 8 metrest abs∞Met01J𝑡01=II
10 2 5 9 mp2an J𝑡01=II
11 10 eqcomi II=J𝑡01