Metamath Proof Explorer


Theorem dfiun2gOLD

Description: Obsolete version of dfiun2g as of 11-Dec-2024. (Contributed by NM, 23-Mar-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof shortened by Rohan Ridenour, 11-Aug-2023) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion dfiun2gOLD xABCxAB=y|xAy=B

Proof

Step Hyp Ref Expression
1 nfra1 xxABC
2 rspa xABCxABC
3 clel3g BCzByy=Bzy
4 2 3 syl xABCxAzByy=Bzy
5 1 4 rexbida xABCxAzBxAyy=Bzy
6 rexcom4 xAyy=BzyyxAy=Bzy
7 5 6 bitrdi xABCxAzByxAy=Bzy
8 r19.41v xAy=BzyxAy=Bzy
9 8 exbii yxAy=BzyyxAy=Bzy
10 exancom yxAy=BzyyzyxAy=B
11 9 10 bitri yxAy=BzyyzyxAy=B
12 7 11 bitrdi xABCxAzByzyxAy=B
13 eliun zxABxAzB
14 eluniab zy|xAy=ByzyxAy=B
15 12 13 14 3bitr4g xABCzxABzy|xAy=B
16 15 eqrdv xABCxAB=y|xAy=B