| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶 | 
						
							| 2 |  | rspa | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝐶 ) | 
						
							| 3 |  | clel3g | ⊢ ( 𝐵  ∈  𝐶  →  ( 𝑧  ∈  𝐵  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  ∧  𝑥  ∈  𝐴 )  →  ( 𝑧  ∈  𝐵  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 5 | 1 4 | rexbida | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 6 |  | rexcom4 | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) | 
						
							| 7 | 5 6 | bitrdi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵  ↔  ∃ 𝑦 ∃ 𝑥  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 8 |  | r19.41v | ⊢ ( ∃ 𝑥  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) | 
						
							| 9 | 8 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 ) ) | 
						
							| 10 |  | exancom | ⊢ ( ∃ 𝑦 ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( ∃ 𝑦 ∃ 𝑥  ∈  𝐴 ( 𝑦  =  𝐵  ∧  𝑧  ∈  𝑦 )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 ) ) | 
						
							| 12 | 7 11 | bitrdi | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  →  ( ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 ) ) ) | 
						
							| 13 |  | eliun | ⊢ ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  ∃ 𝑥  ∈  𝐴 𝑧  ∈  𝐵 ) | 
						
							| 14 |  | eluniab | ⊢ ( 𝑧  ∈  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 }  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑦  ∧  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 ) ) | 
						
							| 15 | 12 13 14 | 3bitr4g | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  →  ( 𝑧  ∈  ∪  𝑥  ∈  𝐴 𝐵  ↔  𝑧  ∈  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 } ) ) | 
						
							| 16 | 15 | eqrdv | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝐶  →  ∪  𝑥  ∈  𝐴 𝐵  =  ∪  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐵 } ) |