Metamath Proof Explorer


Theorem dfnbgr2

Description: Alternate definition of the neighbors of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 15-Nov-2020) (Revised by AV, 21-Mar-2021)

Ref Expression
Hypotheses nbgrval.v V=VtxG
nbgrval.e E=EdgG
Assertion dfnbgr2 NVGNeighbVtxN=nVN|eENene

Proof

Step Hyp Ref Expression
1 nbgrval.v V=VtxG
2 nbgrval.e E=EdgG
3 1 2 nbgrval NVGNeighbVtxN=nVN|eENne
4 prssg NVnVNeneNne
5 4 elvd NVNeneNne
6 5 bicomd NVNneNene
7 6 rexbidv NVeENneeENene
8 7 rabbidv NVnVN|eENne=nVN|eENene
9 3 8 eqtrd NVGNeighbVtxN=nVN|eENene