Metamath Proof Explorer


Theorem dfnbgrss2

Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfvopnbgr2.v V = Vtx G
dfvopnbgr2.e E = Edg G
dfvopnbgr2.u U = n V | n G NeighbVtx N e E N = n e = N
dfsclnbgr6.s S = n V | e E N n e
Assertion dfnbgrss2 N V G NeighbVtx N U U S S G ClNeighbVtx N

Proof

Step Hyp Ref Expression
1 dfvopnbgr2.v V = Vtx G
2 dfvopnbgr2.e E = Edg G
3 dfvopnbgr2.u U = n V | n G NeighbVtx N e E N = n e = N
4 dfsclnbgr6.s S = n V | e E N n e
5 1 2 3 dfnbgr6 N V G NeighbVtx N = U N
6 difss U N U
7 5 6 eqsstrdi N V G NeighbVtx N U
8 ssun1 U U n N | e E n e
9 1 2 3 4 dfsclnbgr6 N V S = U n N | e E n e
10 8 9 sseqtrrid N V U S
11 1 4 2 dfnbgrss N V G NeighbVtx N S S G ClNeighbVtx N
12 11 simprd N V S G ClNeighbVtx N
13 7 10 12 3jca N V G NeighbVtx N U U S S G ClNeighbVtx N