| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfvopnbgr2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | dfvopnbgr2.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | dfvopnbgr2.u | ⊢ 𝑈  =  { 𝑛  ∈  𝑉  ∣  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑁 )  ∨  ∃ 𝑒  ∈  𝐸 ( 𝑁  =  𝑛  ∧  𝑒  =  { 𝑁 } ) ) } | 
						
							| 4 |  | dfsclnbgr6.s | ⊢ 𝑆  =  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } | 
						
							| 5 | 1 2 3 | dfnbgr6 | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝐺  NeighbVtx  𝑁 )  =  ( 𝑈  ∖  { 𝑁 } ) ) | 
						
							| 6 |  | difss | ⊢ ( 𝑈  ∖  { 𝑁 } )  ⊆  𝑈 | 
						
							| 7 | 5 6 | eqsstrdi | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝐺  NeighbVtx  𝑁 )  ⊆  𝑈 ) | 
						
							| 8 |  | ssun1 | ⊢ 𝑈  ⊆  ( 𝑈  ∪  { 𝑛  ∈  { 𝑁 }  ∣  ∃ 𝑒  ∈  𝐸 𝑛  ∈  𝑒 } ) | 
						
							| 9 | 1 2 3 4 | dfsclnbgr6 | ⊢ ( 𝑁  ∈  𝑉  →  𝑆  =  ( 𝑈  ∪  { 𝑛  ∈  { 𝑁 }  ∣  ∃ 𝑒  ∈  𝐸 𝑛  ∈  𝑒 } ) ) | 
						
							| 10 | 8 9 | sseqtrrid | ⊢ ( 𝑁  ∈  𝑉  →  𝑈  ⊆  𝑆 ) | 
						
							| 11 | 1 4 2 | dfnbgrss | ⊢ ( 𝑁  ∈  𝑉  →  ( ( 𝐺  NeighbVtx  𝑁 )  ⊆  𝑆  ∧  𝑆  ⊆  ( 𝐺  ClNeighbVtx  𝑁 ) ) ) | 
						
							| 12 | 11 | simprd | ⊢ ( 𝑁  ∈  𝑉  →  𝑆  ⊆  ( 𝐺  ClNeighbVtx  𝑁 ) ) | 
						
							| 13 | 7 10 12 | 3jca | ⊢ ( 𝑁  ∈  𝑉  →  ( ( 𝐺  NeighbVtx  𝑁 )  ⊆  𝑈  ∧  𝑈  ⊆  𝑆  ∧  𝑆  ⊆  ( 𝐺  ClNeighbVtx  𝑁 ) ) ) |