Metamath Proof Explorer


Theorem dfnbgrss2

Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfvopnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
dfvopnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
dfvopnbgr2.u 𝑈 = { 𝑛𝑉 ∣ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ∨ ∃ 𝑒𝐸 ( 𝑁 = 𝑛𝑒 = { 𝑁 } ) ) }
dfsclnbgr6.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
Assertion dfnbgrss2 ( 𝑁𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑈𝑈𝑆𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 dfvopnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfvopnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
3 dfvopnbgr2.u 𝑈 = { 𝑛𝑉 ∣ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ∨ ∃ 𝑒𝐸 ( 𝑁 = 𝑛𝑒 = { 𝑁 } ) ) }
4 dfsclnbgr6.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
5 1 2 3 dfnbgr6 ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑈 ∖ { 𝑁 } ) )
6 difss ( 𝑈 ∖ { 𝑁 } ) ⊆ 𝑈
7 5 6 eqsstrdi ( 𝑁𝑉 → ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑈 )
8 ssun1 𝑈 ⊆ ( 𝑈 ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒𝐸 𝑛𝑒 } )
9 1 2 3 4 dfsclnbgr6 ( 𝑁𝑉𝑆 = ( 𝑈 ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒𝐸 𝑛𝑒 } ) )
10 8 9 sseqtrrid ( 𝑁𝑉𝑈𝑆 )
11 1 4 2 dfnbgrss ( 𝑁𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) )
12 11 simprd ( 𝑁𝑉𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) )
13 7 10 12 3jca ( 𝑁𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑈𝑈𝑆𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) )