Step |
Hyp |
Ref |
Expression |
1 |
|
dfvopnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfvopnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
dfvopnbgr2.u |
⊢ 𝑈 = { 𝑛 ∈ 𝑉 ∣ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ∨ ∃ 𝑒 ∈ 𝐸 ( 𝑁 = 𝑛 ∧ 𝑒 = { 𝑁 } ) ) } |
4 |
|
dfsclnbgr6.s |
⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } |
5 |
1 2 3
|
dfnbgr6 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) = ( 𝑈 ∖ { 𝑁 } ) ) |
6 |
|
difss |
⊢ ( 𝑈 ∖ { 𝑁 } ) ⊆ 𝑈 |
7 |
5 6
|
eqsstrdi |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑈 ) |
8 |
|
ssun1 |
⊢ 𝑈 ⊆ ( 𝑈 ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) |
9 |
1 2 3 4
|
dfsclnbgr6 |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 = ( 𝑈 ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) ) |
10 |
8 9
|
sseqtrrid |
⊢ ( 𝑁 ∈ 𝑉 → 𝑈 ⊆ 𝑆 ) |
11 |
1 4 2
|
dfnbgrss |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) ) |
12 |
11
|
simprd |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) |
13 |
7 10 12
|
3jca |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝐺 NeighbVtx 𝑁 ) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑆 ∧ 𝑆 ⊆ ( 𝐺 ClNeighbVtx 𝑁 ) ) ) |