Step |
Hyp |
Ref |
Expression |
1 |
|
dfvopnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
dfvopnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
dfvopnbgr2.u |
⊢ 𝑈 = { 𝑛 ∈ 𝑉 ∣ ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑁 ) ∨ ∃ 𝑒 ∈ 𝐸 ( 𝑁 = 𝑛 ∧ 𝑒 = { 𝑁 } ) ) } |
4 |
|
dfsclnbgr6.s |
⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } |
5 |
|
simpr |
⊢ ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → 𝑛 ∈ 𝑒 ) |
6 |
5
|
anim1i |
⊢ ( ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∧ 𝑛 = 𝑁 ) → ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) |
7 |
6
|
olcd |
⊢ ( ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∧ 𝑛 = 𝑁 ) → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) |
8 |
7
|
expcom |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ ( 𝑛 ≠ 𝑁 ∧ ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
10 |
9
|
biimpri |
⊢ ( ( 𝑛 ≠ 𝑁 ∧ ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) → ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) |
11 |
10
|
orcd |
⊢ ( ( 𝑛 ≠ 𝑁 ∧ ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) → ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ) |
12 |
11
|
orcd |
⊢ ( ( 𝑛 ≠ 𝑁 ∧ ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) |
13 |
12
|
ex |
⊢ ( 𝑛 ≠ 𝑁 → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) ) |
14 |
8 13
|
pm2.61ine |
⊢ ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) |
15 |
|
3simpc |
⊢ ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) |
16 |
15
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
17 |
|
vsnid |
⊢ 𝑛 ∈ { 𝑛 } |
18 |
17
|
a1i |
⊢ ( 𝑒 = { 𝑛 } → 𝑛 ∈ { 𝑛 } ) |
19 |
|
eleq2 |
⊢ ( 𝑒 = { 𝑛 } → ( 𝑛 ∈ 𝑒 ↔ 𝑛 ∈ { 𝑛 } ) ) |
20 |
18 19
|
mpbird |
⊢ ( 𝑒 = { 𝑛 } → 𝑛 ∈ 𝑒 ) |
21 |
20
|
adantl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) → 𝑛 ∈ 𝑒 ) |
22 |
|
eleq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ∈ 𝑒 ↔ 𝑁 ∈ 𝑒 ) ) |
23 |
22
|
bicomd |
⊢ ( 𝑛 = 𝑁 → ( 𝑁 ∈ 𝑒 ↔ 𝑛 ∈ 𝑒 ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) → ( 𝑁 ∈ 𝑒 ↔ 𝑛 ∈ 𝑒 ) ) |
25 |
21 24
|
mpbird |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) → 𝑁 ∈ 𝑒 ) |
26 |
25
|
adantl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) → 𝑁 ∈ 𝑒 ) |
27 |
21
|
adantl |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) → 𝑛 ∈ 𝑒 ) |
28 |
26 27
|
jca |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) |
29 |
28
|
ex |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
30 |
16 29
|
jaod |
⊢ ( 𝑁 ∈ 𝑉 → ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
31 |
22
|
biimpac |
⊢ ( ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) → 𝑁 ∈ 𝑒 ) |
32 |
|
simpl |
⊢ ( ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) → 𝑛 ∈ 𝑒 ) |
33 |
31 32
|
jca |
⊢ ( ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) |
34 |
33
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
35 |
30 34
|
jaod |
⊢ ( 𝑁 ∈ 𝑉 → ( ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) → ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ) ) |
36 |
14 35
|
impbid2 |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) ) |
37 |
36
|
rexbidv |
⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ ∃ 𝑒 ∈ 𝐸 ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) ) |
38 |
|
r19.43 |
⊢ ( ∃ 𝑒 ∈ 𝐸 ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ↔ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ∃ 𝑒 ∈ 𝐸 ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) |
39 |
38
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 ( ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ↔ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ∃ 𝑒 ∈ 𝐸 ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ) ) |
40 |
|
r19.41v |
⊢ ( ∃ 𝑒 ∈ 𝐸 ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ↔ ( ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) |
41 |
40
|
biancomi |
⊢ ( ∃ 𝑒 ∈ 𝐸 ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ↔ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) |
42 |
41
|
a1i |
⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ↔ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) ) |
43 |
42
|
orbi2d |
⊢ ( 𝑁 ∈ 𝑉 → ( ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ∃ 𝑒 ∈ 𝐸 ( 𝑛 ∈ 𝑒 ∧ 𝑛 = 𝑁 ) ) ↔ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) ) ) |
44 |
37 39 43
|
3bitrd |
⊢ ( 𝑁 ∈ 𝑉 → ( ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ↔ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) ) ) |
45 |
44
|
rabbidv |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } = { 𝑛 ∈ 𝑉 ∣ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) } ) |
46 |
|
unrab |
⊢ ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ∪ { 𝑛 ∈ 𝑉 ∣ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) } ) = { 𝑛 ∈ 𝑉 ∣ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) } |
47 |
|
rabsneq |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } = { 𝑛 ∈ 𝑉 ∣ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) } ) |
48 |
47
|
eqcomd |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ 𝑉 ∣ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) } = { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) |
49 |
48
|
uneq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ∪ { 𝑛 ∈ 𝑉 ∣ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) } ) = ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) ) |
50 |
46 49
|
eqtr3id |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ 𝑉 ∣ ( ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) ∨ ( 𝑛 = 𝑁 ∧ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 ) ) } = ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) ) |
51 |
45 50
|
eqtrd |
⊢ ( 𝑁 ∈ 𝑉 → { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } = ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) ) |
52 |
1 4 2
|
dfsclnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) } ) |
53 |
1 2 3
|
dfvopnbgr2 |
⊢ ( 𝑁 ∈ 𝑉 → 𝑈 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ) |
54 |
53
|
uneq1d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑈 ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) = ( { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 ( ( 𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒 ) ∨ ( 𝑛 = 𝑁 ∧ 𝑒 = { 𝑛 } ) ) } ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) ) |
55 |
51 52 54
|
3eqtr4d |
⊢ ( 𝑁 ∈ 𝑉 → 𝑆 = ( 𝑈 ∪ { 𝑛 ∈ { 𝑁 } ∣ ∃ 𝑒 ∈ 𝐸 𝑛 ∈ 𝑒 } ) ) |