| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfvopnbgr2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | dfvopnbgr2.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | dfvopnbgr2.u |  |-  U = { n e. V | ( n e. ( G NeighbVtx N ) \/ E. e e. E ( N = n /\ e = { N } ) ) } | 
						
							| 4 |  | dfsclnbgr6.s |  |-  S = { n e. V | E. e e. E { N , n } C_ e } | 
						
							| 5 | 1 2 3 | dfnbgr6 |  |-  ( N e. V -> ( G NeighbVtx N ) = ( U \ { N } ) ) | 
						
							| 6 |  | difss |  |-  ( U \ { N } ) C_ U | 
						
							| 7 | 5 6 | eqsstrdi |  |-  ( N e. V -> ( G NeighbVtx N ) C_ U ) | 
						
							| 8 |  | ssun1 |  |-  U C_ ( U u. { n e. { N } | E. e e. E n e. e } ) | 
						
							| 9 | 1 2 3 4 | dfsclnbgr6 |  |-  ( N e. V -> S = ( U u. { n e. { N } | E. e e. E n e. e } ) ) | 
						
							| 10 | 8 9 | sseqtrrid |  |-  ( N e. V -> U C_ S ) | 
						
							| 11 | 1 4 2 | dfnbgrss |  |-  ( N e. V -> ( ( G NeighbVtx N ) C_ S /\ S C_ ( G ClNeighbVtx N ) ) ) | 
						
							| 12 | 11 | simprd |  |-  ( N e. V -> S C_ ( G ClNeighbVtx N ) ) | 
						
							| 13 | 7 10 12 | 3jca |  |-  ( N e. V -> ( ( G NeighbVtx N ) C_ U /\ U C_ S /\ S C_ ( G ClNeighbVtx N ) ) ) |