Step |
Hyp |
Ref |
Expression |
1 |
|
dfvopnbgr2.v |
|- V = ( Vtx ` G ) |
2 |
|
dfvopnbgr2.e |
|- E = ( Edg ` G ) |
3 |
|
dfvopnbgr2.u |
|- U = { n e. V | ( n e. ( G NeighbVtx N ) \/ E. e e. E ( N = n /\ e = { N } ) ) } |
4 |
|
dfsclnbgr6.s |
|- S = { n e. V | E. e e. E { N , n } C_ e } |
5 |
1 2 3
|
dfnbgr6 |
|- ( N e. V -> ( G NeighbVtx N ) = ( U \ { N } ) ) |
6 |
|
difss |
|- ( U \ { N } ) C_ U |
7 |
5 6
|
eqsstrdi |
|- ( N e. V -> ( G NeighbVtx N ) C_ U ) |
8 |
|
ssun1 |
|- U C_ ( U u. { n e. { N } | E. e e. E n e. e } ) |
9 |
1 2 3 4
|
dfsclnbgr6 |
|- ( N e. V -> S = ( U u. { n e. { N } | E. e e. E n e. e } ) ) |
10 |
8 9
|
sseqtrrid |
|- ( N e. V -> U C_ S ) |
11 |
1 4 2
|
dfnbgrss |
|- ( N e. V -> ( ( G NeighbVtx N ) C_ S /\ S C_ ( G ClNeighbVtx N ) ) ) |
12 |
11
|
simprd |
|- ( N e. V -> S C_ ( G ClNeighbVtx N ) ) |
13 |
7 10 12
|
3jca |
|- ( N e. V -> ( ( G NeighbVtx N ) C_ U /\ U C_ S /\ S C_ ( G ClNeighbVtx N ) ) ) |