Metamath Proof Explorer


Theorem dfnbgrss2

Description: Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfvopnbgr2.v
|- V = ( Vtx ` G )
dfvopnbgr2.e
|- E = ( Edg ` G )
dfvopnbgr2.u
|- U = { n e. V | ( n e. ( G NeighbVtx N ) \/ E. e e. E ( N = n /\ e = { N } ) ) }
dfsclnbgr6.s
|- S = { n e. V | E. e e. E { N , n } C_ e }
Assertion dfnbgrss2
|- ( N e. V -> ( ( G NeighbVtx N ) C_ U /\ U C_ S /\ S C_ ( G ClNeighbVtx N ) ) )

Proof

Step Hyp Ref Expression
1 dfvopnbgr2.v
 |-  V = ( Vtx ` G )
2 dfvopnbgr2.e
 |-  E = ( Edg ` G )
3 dfvopnbgr2.u
 |-  U = { n e. V | ( n e. ( G NeighbVtx N ) \/ E. e e. E ( N = n /\ e = { N } ) ) }
4 dfsclnbgr6.s
 |-  S = { n e. V | E. e e. E { N , n } C_ e }
5 1 2 3 dfnbgr6
 |-  ( N e. V -> ( G NeighbVtx N ) = ( U \ { N } ) )
6 difss
 |-  ( U \ { N } ) C_ U
7 5 6 eqsstrdi
 |-  ( N e. V -> ( G NeighbVtx N ) C_ U )
8 ssun1
 |-  U C_ ( U u. { n e. { N } | E. e e. E n e. e } )
9 1 2 3 4 dfsclnbgr6
 |-  ( N e. V -> S = ( U u. { n e. { N } | E. e e. E n e. e } ) )
10 8 9 sseqtrrid
 |-  ( N e. V -> U C_ S )
11 1 4 2 dfnbgrss
 |-  ( N e. V -> ( ( G NeighbVtx N ) C_ S /\ S C_ ( G ClNeighbVtx N ) ) )
12 11 simprd
 |-  ( N e. V -> S C_ ( G ClNeighbVtx N ) )
13 7 10 12 3jca
 |-  ( N e. V -> ( ( G NeighbVtx N ) C_ U /\ U C_ S /\ S C_ ( G ClNeighbVtx N ) ) )