Metamath Proof Explorer


Theorem dfnfc2

Description: An alternative statement of the effective freeness of a class A , when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof shortened by JJ, 26-Jul-2021)

Ref Expression
Assertion dfnfc2 xAV_xAyxy=A

Proof

Step Hyp Ref Expression
1 nfcvd _xA_xy
2 id _xA_xA
3 1 2 nfeqd _xAxy=A
4 3 alrimiv _xAyxy=A
5 df-nfc _xAyxyA
6 velsn yAy=A
7 6 nfbii xyAxy=A
8 7 albii yxyAyxy=A
9 5 8 sylbbr yxy=A_xA
10 9 nfunid yxy=A_xA
11 nfa1 xxAV
12 unisng AVA=A
13 12 sps xAVA=A
14 11 13 nfceqdf xAV_xA_xA
15 10 14 imbitrid xAVyxy=A_xA
16 4 15 impbid2 xAV_xAyxy=A