Metamath Proof Explorer


Theorem dfnrm3

Description: A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm . (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Assertion dfnrm3 Nrm=jTop|cClsdjdClsdjcd=xneijcyneijdxy=

Proof

Step Hyp Ref Expression
1 isnrm4 jNrmjTopcClsdjdClsdjcd=xneijcyneijdxy=
2 1 eqabi Nrm=j|jTopcClsdjdClsdjcd=xneijcyneijdxy=
3 df-rab jTop|cClsdjdClsdjcd=xneijcyneijdxy==j|jTopcClsdjdClsdjcd=xneijcyneijdxy=
4 2 3 eqtr4i Nrm=jTop|cClsdjdClsdjcd=xneijcyneijdxy=