Metamath Proof Explorer


Theorem dfopif

Description: Rewrite df-op using if . When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Assertion dfopif AB=ifAVBVAAB

Proof

Step Hyp Ref Expression
1 df-op AB=x|AVBVxAAB
2 df-3an AVBVxAABAVBVxAAB
3 2 abbii x|AVBVxAAB=x|AVBVxAAB
4 iftrue AVBVifAVBVAAB=AAB
5 ibar AVBVxAABAVBVxAAB
6 5 eqabdv AVBVAAB=x|AVBVxAAB
7 4 6 eqtr2d AVBVx|AVBVxAAB=ifAVBVAAB
8 pm2.21 ¬AVBVAVBVx
9 8 adantrd ¬AVBVAVBVxAABx
10 9 abssdv ¬AVBVx|AVBVxAAB
11 ss0 x|AVBVxAABx|AVBVxAAB=
12 10 11 syl ¬AVBVx|AVBVxAAB=
13 iffalse ¬AVBVifAVBVAAB=
14 12 13 eqtr4d ¬AVBVx|AVBVxAAB=ifAVBVAAB
15 7 14 pm2.61i x|AVBVxAAB=ifAVBVAAB
16 1 3 15 3eqtri AB=ifAVBVAAB