Metamath Proof Explorer


Theorem dfrel2

Description: Alternate definition of relation. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dfrel2 RelRR-1-1=R

Proof

Step Hyp Ref Expression
1 relcnv RelR-1-1
2 vex xV
3 vex yV
4 2 3 opelcnv xyR-1-1yxR-1
5 3 2 opelcnv yxR-1xyR
6 4 5 bitri xyR-1-1xyR
7 6 eqrelriv RelR-1-1RelRR-1-1=R
8 1 7 mpan RelRR-1-1=R
9 releq R-1-1=RRelR-1-1RelR
10 1 9 mpbii R-1-1=RRelR
11 8 10 impbii RelRR-1-1=R