Metamath Proof Explorer


Theorem dfrel2

Description: Alternate definition of relation. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dfrel2 Rel R R -1 -1 = R

Proof

Step Hyp Ref Expression
1 relcnv Rel R -1 -1
2 vex x V
3 vex y V
4 2 3 opelcnv x y R -1 -1 y x R -1
5 3 2 opelcnv y x R -1 x y R
6 4 5 bitri x y R -1 -1 x y R
7 6 eqrelriv Rel R -1 -1 Rel R R -1 -1 = R
8 1 7 mpan Rel R R -1 -1 = R
9 releq R -1 -1 = R Rel R -1 -1 Rel R
10 1 9 mpbii R -1 -1 = R Rel R
11 8 10 impbii Rel R R -1 -1 = R