Metamath Proof Explorer


Theorem dfswapf2

Description: Alternate definition of swapF ( df-swapf ). (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Assertion dfswapf2 Could not format assertion : No typesetting found for |- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-swapf Could not format swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) : No typesetting found for |- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( x e. b |-> U. `' { x } ) , ( u e. b , v e. b |-> ( f e. ( u h v ) |-> U. `' { f } ) ) >. ) with typecode |-
2 fvex Base c × c d V
3 id b = Base c × c d b = Base c × c d
4 eqid c × c d = c × c d
5 eqid Base c = Base c
6 eqid Base d = Base d
7 4 5 6 xpcbas Base c × Base d = Base c × c d
8 3 7 eqtr4di b = Base c × c d b = Base c × Base d
9 8 mpteq1d b = Base c × c d x b x -1 = x Base c × Base d x -1
10 eqidd b = Base c × c d f u h v f -1 = f u h v f -1
11 8 8 10 mpoeq123dv b = Base c × c d u b , v b f u h v f -1 = u Base c × Base d , v Base c × Base d f u h v f -1
12 9 11 opeq12d b = Base c × c d x b x -1 u b , v b f u h v f -1 = x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1
13 12 csbeq2dv b = Base c × c d Hom c × c d / h x b x -1 u b , v b f u h v f -1 = Hom c × c d / h x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1
14 2 13 csbie Base c × c d / b Hom c × c d / h x b x -1 u b , v b f u h v f -1 = Hom c × c d / h x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1
15 ovex c × c d V
16 fveq2 s = c × c d Base s = Base c × c d
17 fveq2 s = c × c d Hom s = Hom c × c d
18 17 csbeq1d s = c × c d Hom s / h x b x -1 u b , v b f u h v f -1 = Hom c × c d / h x b x -1 u b , v b f u h v f -1
19 16 18 csbeq12dv s = c × c d Base s / b Hom s / h x b x -1 u b , v b f u h v f -1 = Base c × c d / b Hom c × c d / h x b x -1 u b , v b f u h v f -1
20 15 19 csbie c × c d / s Base s / b Hom s / h x b x -1 u b , v b f u h v f -1 = Base c × c d / b Hom c × c d / h x b x -1 u b , v b f u h v f -1
21 17 csbeq1d s = c × c d Hom s / h tpos I b u b , v b tpos I u h v = Hom c × c d / h tpos I b u b , v b tpos I u h v
22 16 21 csbeq12dv s = c × c d Base s / b Hom s / h tpos I b u b , v b tpos I u h v = Base c × c d / b Hom c × c d / h tpos I b u b , v b tpos I u h v
23 15 22 csbie c × c d / s Base s / b Hom s / h tpos I b u b , v b tpos I u h v = Base c × c d / b Hom c × c d / h tpos I b u b , v b tpos I u h v
24 8 reseq2d b = Base c × c d tpos I b = tpos I Base c × Base d
25 eqidd b = Base c × c d tpos I u h v = tpos I u h v
26 8 8 25 mpoeq123dv b = Base c × c d u b , v b tpos I u h v = u Base c × Base d , v Base c × Base d tpos I u h v
27 24 26 opeq12d b = Base c × c d tpos I b u b , v b tpos I u h v = tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u h v
28 27 csbeq2dv b = Base c × c d Hom c × c d / h tpos I b u b , v b tpos I u h v = Hom c × c d / h tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u h v
29 2 28 csbie Base c × c d / b Hom c × c d / h tpos I b u b , v b tpos I u h v = Hom c × c d / h tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u h v
30 eqid Base c × Base d = Base c × Base d
31 30 tposideq2 tpos I Base c × Base d = x Base c × Base d x -1
32 eqid 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v = 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v
33 32 tposideq2 tpos I 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v = f 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v f -1
34 eqid Hom c = Hom c
35 eqid Hom d = Hom d
36 eqid Hom c × c d = Hom c × c d
37 simpl u Base c × Base d v Base c × Base d u Base c × Base d
38 simpr u Base c × Base d v Base c × Base d v Base c × Base d
39 4 7 34 35 36 37 38 xpchom u Base c × Base d v Base c × Base d u Hom c × c d v = 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v
40 39 reseq2d u Base c × Base d v Base c × Base d tpos I u Hom c × c d v = tpos I 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v
41 39 mpteq1d u Base c × Base d v Base c × Base d f u Hom c × c d v f -1 = f 1 st u Hom c 1 st v × 2 nd u Hom d 2 nd v f -1
42 33 40 41 3eqtr4a u Base c × Base d v Base c × Base d tpos I u Hom c × c d v = f u Hom c × c d v f -1
43 42 mpoeq3ia u Base c × Base d , v Base c × Base d tpos I u Hom c × c d v = u Base c × Base d , v Base c × Base d f u Hom c × c d v f -1
44 31 43 opeq12i tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u Hom c × c d v = x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u Hom c × c d v f -1
45 fvex Hom c × c d V
46 oveq h = Hom c × c d u h v = u Hom c × c d v
47 46 reseq2d h = Hom c × c d tpos I u h v = tpos I u Hom c × c d v
48 47 mpoeq3dv h = Hom c × c d u Base c × Base d , v Base c × Base d tpos I u h v = u Base c × Base d , v Base c × Base d tpos I u Hom c × c d v
49 48 opeq2d h = Hom c × c d tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u h v = tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u Hom c × c d v
50 45 49 csbie Hom c × c d / h tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u h v = tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u Hom c × c d v
51 46 mpteq1d h = Hom c × c d f u h v f -1 = f u Hom c × c d v f -1
52 51 mpoeq3dv h = Hom c × c d u Base c × Base d , v Base c × Base d f u h v f -1 = u Base c × Base d , v Base c × Base d f u Hom c × c d v f -1
53 52 opeq2d h = Hom c × c d x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1 = x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u Hom c × c d v f -1
54 45 53 csbie Hom c × c d / h x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1 = x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u Hom c × c d v f -1
55 44 50 54 3eqtr4i Hom c × c d / h tpos I Base c × Base d u Base c × Base d , v Base c × Base d tpos I u h v = Hom c × c d / h x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1
56 23 29 55 3eqtri c × c d / s Base s / b Hom s / h tpos I b u b , v b tpos I u h v = Hom c × c d / h x Base c × Base d x -1 u Base c × Base d , v Base c × Base d f u h v f -1
57 14 20 56 3eqtr4ri c × c d / s Base s / b Hom s / h tpos I b u b , v b tpos I u h v = c × c d / s Base s / b Hom s / h x b x -1 u b , v b f u h v f -1
58 57 a1i c V d V c × c d / s Base s / b Hom s / h tpos I b u b , v b tpos I u h v = c × c d / s Base s / b Hom s / h x b x -1 u b , v b f u h v f -1
59 58 mpoeq3ia c V , d V c × c d / s Base s / b Hom s / h tpos I b u b , v b tpos I u h v = c V , d V c × c d / s Base s / b Hom s / h x b x -1 u b , v b f u h v f -1
60 1 59 eqtr4i Could not format swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) : No typesetting found for |- swapF = ( c e. _V , d e. _V |-> [_ ( c Xc. d ) / s ]_ [_ ( Base ` s ) / b ]_ [_ ( Hom ` s ) / h ]_ <. ( tpos _I |` b ) , ( u e. b , v e. b |-> ( tpos _I |` ( u h v ) ) ) >. ) with typecode |-