Metamath Proof Explorer


Theorem dfsymrel2

Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 19-Apr-2019) (Revised by Peter Mazsa, 17-Aug-2021)

Ref Expression
Assertion dfsymrel2 SymRelRR-1RRelR

Proof

Step Hyp Ref Expression
1 df-symrel SymRelRRdomR×ranR-1RdomR×ranRRelR
2 dfrel6 RelRRdomR×ranR=R
3 2 biimpi RelRRdomR×ranR=R
4 3 cnveqd RelRRdomR×ranR-1=R-1
5 4 3 sseq12d RelRRdomR×ranR-1RdomR×ranRR-1R
6 5 pm5.32ri RdomR×ranR-1RdomR×ranRRelRR-1RRelR
7 1 6 bitri SymRelRR-1RRelR