Metamath Proof Explorer


Theorem dia1dim

Description: Two expressions for the 1-dimensional subspaces of partial vector space A (when F is a nonzero vector i.e. non-identity translation). Remark after Lemma L in Crawley p. 120 line 21. (Contributed by NM, 15-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dia1dim.h H = LHyp K
dia1dim.t T = LTrn K W
dia1dim.r R = trL K W
dia1dim.e E = TEndo K W
dia1dim.i I = DIsoA K W
Assertion dia1dim K HL W H F T I R F = g | s E g = s F

Proof

Step Hyp Ref Expression
1 dia1dim.h H = LHyp K
2 dia1dim.t T = LTrn K W
3 dia1dim.r R = trL K W
4 dia1dim.e E = TEndo K W
5 dia1dim.i I = DIsoA K W
6 simpl K HL W H F T K HL W H
7 eqid Base K = Base K
8 7 1 2 3 trlcl K HL W H F T R F Base K
9 eqid K = K
10 9 1 2 3 trlle K HL W H F T R F K W
11 7 9 1 2 3 5 diaval K HL W H R F Base K R F K W I R F = g T | R g K R F
12 6 8 10 11 syl12anc K HL W H F T I R F = g T | R g K R F
13 9 1 2 3 4 dva1dim K HL W H F T g | s E g = s F = g T | R g K R F
14 12 13 eqtr4d K HL W H F T I R F = g | s E g = s F