Metamath Proof Explorer


Theorem diagciso

Description: The diagonal functor is an isomorphism from a category C to the category of functors from a terminal category to C .

It is provable that the inverse of the diagonal functor is the mapped object by the transposed curry of ( D evalF C ) , i.e., U. ran ( 1st( <. D , Q >. curryF ( ( D evalF C ) o.func ( D swapF Q ) ) ) ) .

(Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diagffth.c φ C Cat
diagffth.d No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
diagffth.q Q = D FuncCat C
diagciso.e E = CatCat U
diagciso.u φ U V
diagciso.c φ C U
diagciso.1 φ Q U
diagciso.i I = Iso E
diagciso.l L = C Δ func D
Assertion diagciso φ L C I Q

Proof

Step Hyp Ref Expression
1 diagffth.c φ C Cat
2 diagffth.d Could not format ( ph -> D e. TermCat ) : No typesetting found for |- ( ph -> D e. TermCat ) with typecode |-
3 diagffth.q Q = D FuncCat C
4 diagciso.e E = CatCat U
5 diagciso.u φ U V
6 diagciso.c φ C U
7 diagciso.1 φ Q U
8 diagciso.i I = Iso E
9 diagciso.l L = C Δ func D
10 1 2 3 9 diagffth φ L C Full Q C Faith Q
11 eqid Base C = Base C
12 11 2 1 9 diag1f1o φ 1 st L : Base C 1-1 onto D Func C
13 eqid Base E = Base E
14 3 fucbas D Func C = Base Q
15 6 1 elind φ C U Cat
16 4 13 5 catcbas φ Base E = U Cat
17 15 16 eleqtrrd φ C Base E
18 2 termccd φ D Cat
19 3 18 1 fuccat φ Q Cat
20 7 19 elind φ Q U Cat
21 20 16 eleqtrrd φ Q Base E
22 4 13 11 14 5 17 21 8 catciso φ L C I Q L C Full Q C Faith Q 1 st L : Base C 1-1 onto D Func C
23 10 12 22 mpbir2and φ L C I Q