Metamath Proof Explorer


Theorem dibelval1st

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval1.b B=BaseK
dibelval1.l ˙=K
dibelval1.h H=LHypK
dibelval1.j J=DIsoAKW
dibelval1.i I=DIsoBKW
Assertion dibelval1st KVWHXBX˙WYIX1stYJX

Proof

Step Hyp Ref Expression
1 dibelval1.b B=BaseK
2 dibelval1.l ˙=K
3 dibelval1.h H=LHypK
4 dibelval1.j J=DIsoAKW
5 dibelval1.i I=DIsoBKW
6 eqid LTrnKW=LTrnKW
7 eqid fLTrnKWIB=fLTrnKWIB
8 1 2 3 6 7 4 5 dibval2 KVWHXBX˙WIX=JX×fLTrnKWIB
9 8 eleq2d KVWHXBX˙WYIXYJX×fLTrnKWIB
10 9 biimp3a KVWHXBX˙WYIXYJX×fLTrnKWIB
11 xp1st YJX×fLTrnKWIB1stYJX
12 10 11 syl KVWHXBX˙WYIX1stYJX