Metamath Proof Explorer


Theorem dibfna

Description: Functionality and domain of the partial isomorphism B. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dibfna.h H=LHypK
dibfna.j J=DIsoAKW
dibfna.i I=DIsoBKW
Assertion dibfna KVWHIFndomJ

Proof

Step Hyp Ref Expression
1 dibfna.h H=LHypK
2 dibfna.j J=DIsoAKW
3 dibfna.i I=DIsoBKW
4 fvex JyV
5 snex fLTrnKWIBaseKV
6 4 5 xpex Jy×fLTrnKWIBaseKV
7 eqid ydomJJy×fLTrnKWIBaseK=ydomJJy×fLTrnKWIBaseK
8 6 7 fnmpti ydomJJy×fLTrnKWIBaseKFndomJ
9 eqid BaseK=BaseK
10 eqid LTrnKW=LTrnKW
11 eqid fLTrnKWIBaseK=fLTrnKWIBaseK
12 9 1 10 11 2 3 dibfval KVWHI=ydomJJy×fLTrnKWIBaseK
13 12 fneq1d KVWHIFndomJydomJJy×fLTrnKWIBaseKFndomJ
14 8 13 mpbiri KVWHIFndomJ